
A Review of the Relations Between Logical Argumentation

and Reasoning with Maximal Consistency

Ofer Arieli 1 AnneMarie Borg 2 Jesse Heyninck 2

1 School of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

2 Institute of Philosophy II, Ruhr University Bochum, Germany
{annemarie.borg , jesse.heyninck}@rub.de

March 20, 2019

Abstract

This is a survey of some recent results relating Dung-style semantics for different types of
logical argumentation frameworks and several forms of reasoning with maximally consistent sets
(MCS) of premises. The related formalsims are also examined with respect to some rationality
postulates and are carried on to corresponding proof systems for non-monotonic reasoning.

1 Introduction

Structured argumentation is concerned with the modeling of argumentation-based inferences, where
arguments have a concrete structure. Logical argumentation (also called deductive argumentation) is a
primary approach in this context, where the basic ingredients of the arguments (namely, their premises
and claims) are expressed in terms of a formal language, and the relationship between these ingredients
are justified by some underlying entailment relation. A primary goal of structured argumentation (and
so of logical argumentation) is to prove a general and intuitive semantics for making consequences by
corresponding argumentation-based logics in particular and non-monotonic logics in general.1

In this paper we review the relations of logical argumentation to one of the fundamental principles
of non-monotonic reasoning and inconsistency handling, according to which the main information of
a given set of assertions is carried by its consistent subsets and that such subsets should be as large as
possible in order not to lose data. This principle, first introduced in the seminal paper of Rescher and
Manor [67], has given a boost to a vast amount of research of consistency maintenance in different
AI-related areas, including integration [17, 56] and knowledge-base systems [24], consistency operators
for belief revision [46, 55], computational linguistics [57], and so forth. In this respect, this work is
not only a retrospective on the way logical argumentation maintains consistency, but also a note on
its potential application in related AI-based paradigms.

The study of the relations between logical argumentation theory and reasoning with maximal
consistency may be traced back at least to Cayrol [37], with many follow-up or related papers, based
either on classical logic (e.g., [5, 6, 44, 48, 73, 74]) or on arbitrary (Tarskian) propositional logic (e.g.,

1We refer to [25, 28, 63] for recent surveys on the subject. Some reviews on particular approaches to structured
argumentation can be found, e.g., in [26, 43, 45, 48, 62, 72].

1

[4, 8, 9, 30, 49]). In what follows we shall recall some of the latest results concerning this research area.
To keep this paper self-contained we first review, in the next section, some basic notions from logical
argumentation and set up our framework. Then we show the relations between logical argumentation
and reasoning with maximally consistent premise sets (MCS) from several perspectives:

• In Section 3 we consider three basic forms of reasoning with MCS: by the transitive closure of
their intersection, by the intersection of their transitive closures, and by taking into account
consistent subsets that are not necessarily maximal. Each one of these forms of reasoning is
then related to Dung’s semantics for logical argumentation (see, respectively, Theorems 1–3).

• In Section 4 we consider the prioritized case, i.e., where formulas are assigned quantitative
measurements to reflect their relative strength (or reliability, or any other preference criterion).
In this case as well we show the relations between these kinds of logical argumentation and
MCS-based reasoning (Theorem 4).

• In Section 5 we consider more general forms of arguments, in which the premises of the arguments
may be of two different natures: some of them may be strict (non-attackable) assumptions, while
others may be defeasible (i.e., retractable) ones. The correspondence to MCS-based reasoning
is shown for different forms of this kind of setting, including assumption-based frameworks
(Theorem 5) and dialectical frameworks (Theorem 6).

• In Section 6 we consider two further generalizations of the setting. One is concerned with
extended forms of arguments, called hyperarguments, and the other one relaxes the notion of
consistency to coherence. Again, in both cases we provide corresponding characterization results
(see, respectively, Theorems 7 and 8).

In the last part of this paper, we discuss several classes of postulates for these formalisms (Section 7),
and show that the correspondence between logical argumentation and reasoning with maximal con-
sistency goes beyond the representation level, to the operational level (Section 8). For the latter, we
introduce a proof-theoretic approach, imitating argumentation-based dialogs, by which it is possible
to compute the above-mentioned MCS-based entailments (see Theorems 9 and 10).2

2 Preliminaries

As indicated previously, to define arguments in logical argumentation one needs a formal language
for expressing assertions and a consequence relation for representing logical entailments. In what
follows we shall concentrate on propositional languages, since most of the literature and the main
problems involved in developing logical argumentation systems arise already on the propositional
level. Accordingly, we denote by L an arbitrary propositional language. Atomic formulas in L are
denoted by p, q, compound formulas are denoted by γ, δ, ψ, φ, σ, and sets of formulas are denoted by
S, T . Now, a (Tarskian) consequence relation for a language L is a binary relation between sets of
formulas and formulas in L, satisfying the following conditions:

• Reflexivity : if ψ ∈ S then S ` ψ.

• Monotonicity : if S ` ψ and S ⊆ S ′ then S ′ ` ψ.

• Transitivity : if S ` ψ and S ′, ψ ` φ then S,S ′ ` φ.

It is usual to assume that a consequence relation satisfies some further standard conditions:

2Since this is a survey of already known results it does not contain proofs but rather references to the relevant
papers.

2

• Structurality : for every L-substitution θ and every S and ψ: if S ` ψ then θ(S) ` θ(ψ).

• Non-Triviality : p 6` q for every two distinct atomic formulas p and q.

• Finitariness: for every S and ψ such that S ` ψ, there is a finite set T ⊆ S such that T ` ψ.

Structurality means closure under substitutions of formulas. Non-triviality is convenient for excluding
trivial logics, and finitariness is often essential for practical reasoning, where a conclusion is derived
from a finite set of premises.

Together, a language and a consequence relation form a logic, which is a cornerstone of the whole
setting.

Definition 1 (logic) A (propositional) logic is a pair L = 〈L,`〉, where L is a propositional language,
and ` is a structural, non-trivial, and finitary consequence relation for L.

We shall assume that the language L contains at least the following connectives and constant:

a `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p),

a `-conjunction ∧, satisfying: S ` ψ ∧ φ iff S ` ψ and S ` φ,

a `-disjunction ∨, satisfying: S, φ ∨ ψ ` σ iff S, φ ` σ and S, ψ ` σ,

a `-implication ⊃, satisfying: S, φ ` ψ iff S ` φ ⊃ ψ,

a `-falsity F, satisfying: F ` ψ for every formula ψ.

In what follows, we shall abbreviate (φ ⊃ ψ) ∧ (ψ ⊃ φ) by φ ↔ ψ. For a finite set of formulas S we
denote by

∧
S (respectively, by

∨
S) the conjunction (respectively, the disjunction) of all the formulas

in S. We shall say that S is `-consistent if S 6` F.

Given a logic, an argument (in that logic) consists of a premise set (of formulas) and a conclusion
(a formula), such that the conclusion logically follows from the set of premises. Formally:

Definition 2 (argument) Given a logic L = 〈L,`〉, an L-argument (an argument for short) is a
pair A = 〈S, ψ〉, where S is a set of L-formulas and ψ is an L-formula, such that S ` ψ.

Given an argument A = 〈S, ψ〉, we shall sometimes call S the support set (or the premise set) of
A, and ψ the conclusion (or the claim) of A, denoting them by Sup(A) and Conc(A), respectively. For
a set S of arguments, we denote: Sup(S) =

⋃
A∈S Sup(A) and Conc(S) =

⋃
A∈S Conc(A).

So far, the most studied type of arguments is what we call classical arguments. It is based on
classical logic CL = 〈LCL,`CL〉 (with a standard propositional language and the usual interpretations
of the basic connectives ∨,∧,⊃,¬, together with the falsity constant F) and regards only arguments
with subset-minimal, classically consistent support sets.

Definition 3 (classical argument) A classical argument is a CL-argument A = 〈S, ψ〉, where S is
a CL-consistent and ⊆-minimal support set for ψ, that is: (1) S 6`CL F, (2) S `CL ψ, and (3) there is
no S ′ (S such that S ′ `CL ψ.

Intuitively, disagreements between arguments are described in terms of counter-arguments. It is
often said that a counter-argument attacks (or defeats) the argument that it challenges (see [27, 48, 61,
64, 68, 73]). Attacks between arguments are usually described in terms of attack rules (with respect
to the underlying logic). Table 1 lists some of them. For other attack rules (in terms of sequents, [47])
we refer to [12]. Attack rules incorporating modalities are introduced in [69].

3

Rule Name Acronym Attacking Argument Attacked Argument Attack Conditions

Defeat Def 〈S1, ψ1〉 〈S2, ψ2〉 ` ψ1 ⊃ ¬
∧
S2

Direct Defeat DirDef 〈S1, ψ1〉 〈{γ2} ∪ S ′2, ψ2〉 ` ψ1 ⊃ ¬γ2
Undercut Ucut 〈S1, ψ1〉 〈S2 ∪ S ′2, ψ2〉 ` ψ1 ↔ ¬

∧
S2

Direct Undercut DirUcut 〈S1, ψ1〉 〈{γ2} ∪ S ′2, ψ2〉 ` ψ1 ↔ ¬γ2
Consistency Undercut ConUcut 〈∅,¬

∧
S2〉 〈S2 ∪ S ′2, ψ2〉

Rebuttal Reb 〈S1, ψ1〉 〈S2, ψ2〉 ` ψ1 ↔ ¬ψ2

Defeating Rebuttal DefReb 〈S1, ψ1〉 〈S2, ψ2〉 ` ψ1 ⊃ ¬ψ2

Big Argument Attack BigArgAt 〈S1, ψ1〉 〈{γ2} ∪ S ′2, ψ2〉 `
∧
S1 ⊃ ¬γ2

Table 1: Some attack rules. The support sets of the attacked arguments are assumed to be nonempty
(to avoid attacks on tautologies).

Rules like those specified in Table 1 form attack schemes that are applied to particular arguments
according to the underlying logic. For instance, when classical logic is the underlying formalism, the
attacks of 〈p, p〉 on 〈¬p,¬p〉 and of 〈¬p,¬p〉 on 〈p ∧ q, p〉3 are obtained by applications of the Defeat
rule. When an attack rule R is applied we shall sometimes say that its attacking argument R-attacks
the attacked argument.

Note 1 Clearly, the rules in Table 1 are related. The relations among some of the rules for classical
arguments are considered in [48]. Figure 1 shows that when classical logic is the base logic these
relations (together with other relations for ConUcut and BigArgAt) hold also for the more general
definition of argument (Definition 2). In this figure, an arrow from R1 to R2 means that R1 ⊆ R2.

Def

DirDefDirUcut

Ucut

Reb DefReb

ConUcut

BigArgAt

Figure 1: Relations between attack relations from Table 1 when classical logic is the deductive base.

A logical argumentation formalism may be represented as an argumentation framework in the style
of Dung [42]. This is defined next.

Definition 4 (logical argumentation framework) Let L = 〈L,`〉 be a logic and A a set of attack
rules with respect to L. Let also S be a set of L-formulas. The (logical) argumentation framework for
S, induced by L and A, is the pair AFL,A(S) = 〈ArgL(S),Attack〉, where ArgL(S) is the set of the
L-arguments whose supports are subsets of S, and Attack is a relation on ArgL(S)×ArgL(S), defined
by (A1, A2) ∈ Attack iff there is some R ∈ A such that A1 R-attacks A2.

Argumentation frameworks that are induced by classical logic (and some attack rules), and whose
arguments are classical (Definition 3), are called classical (logical) argumentation frameworks.

3Here and in what follows we omit the set signs when the support of the arguments are singletons.

4

In what follows, somewhat abusing the notations, we shall sometimes identify Attack with A. To
simplify the notations, we shall also frequently omit the subscripts L and A in AFL,A(S), and just
write AF(S).

Example 1 Let S1 = {r, p, q,¬p ∨ ¬q} and let AF(S1) be the logical argumentation framework for
S1, induced by classical logic CL and Undercut as the only attack rule. Some of the arguments in this
case are the following:

A0 = 〈r, r〉 A1 = 〈p, p〉 A2 = 〈q, q〉
A3 = 〈¬p ∨ ¬q,¬p ∨ ¬q〉 A4 = 〈p,¬((¬p ∨ ¬q) ∧ q)〉 A5 = 〈q,¬((¬p ∨ ¬q) ∧ p)〉
A6 = 〈{p, q}, p ∧ q〉 A7 = 〈{¬p ∨ ¬q, q},¬p〉 A8 = 〈{¬p ∨ ¬q, p},¬q〉
A⊥ = 〈{p, q,¬p ∨ ¬q},¬r〉 A> = 〈∅,¬(p ∧ q ∧ (¬p ∨ ¬q))〉

A graphical representation of these arguments and the attacks between them is given in Figure 2, where
nodes represent arguments and edges are directed from attacking arguments to attacked arguments.

A1A4

A2A5

A6 A3

A7

A8 A>

A⊥A0

Figure 2: Part of the logical argumentation framework for S1 = {r, p, q,¬p ∨ ¬q} (Example 1).

Given an argumentation framework, a key issue in its understanding is the question what combi-
nations of arguments (called extensions) can collectively be accepted from this framework. According
to Dung [42], this is determined as follows:

Definition 5 (extension-based semantics) Let AF(S) = 〈ArgL(S),Attack〉 be a logical argumen-
tation framework, and let E ⊆ ArgL(S). Below, maximality and minimality are taken with respect to
the subset relation.

• We say that E attacks an argument A, if there is an argument B ∈ E that attacks A (that is,
(B,A) ∈ Attack). The set of arguments that are attacked by E is denoted E+.

• We say that E defends A, if E attacks every argument that attacks A.

• The set E is called conflict-free with respect to AF(S), if it does not attack any of its elements
(i.e., E+ ∩ E = ∅). A set that is maximally conflict-free with respect to AF(S) is called a naive
extension of AF(S).

• An admissible extension of AF(S) is a subset of ArgL(S) that is conflict-free with respect to
AF(S) and defends all of its elements. A complete extension of AF(S) is an admissible extension
of AF(S) that contains all the arguments that it defends.

5

• The minimal complete extension of AF(S) is called the grounded extension of AF(S),4 and a
maximal complete extension of AF(S) is called a preferred extension of AF(S). A complete
extension E of AF(S) is called a stable extension of AF(S) if E ∪ E+ = ArgL(S).

• We write Naive(AF(S)) [respectively: Adm(AF(S)), Cmp(AF(S)), Prf(AF(S)), Stb(AF(S))]
for the set of all the naive [respectively: admissible, complete, preferred, stable] extensions of
AF(S) and Grd(AF(S)) for the unique grounded extension of AF(S).

Properties of the extensions defined above can be found in [42]. Further types of extensions are
considered, e.g., in [18, 19, 20].

Skeptical and credulous approaches for making inferences from the above-mentioned extensions
are now defined as follows:

Definition 6 (extension-based entailments) Let AF(S) = 〈ArgL(S),Attack〉 be a logical argu-
mentation framework, and let Sem ∈ {Naive,Prf,Stb}. We denote:

• S |∼L,A
Grd ψ if there is an argument 〈T , ψ〉 ∈ Grd(AFL,A(S)),5

• S |∼L,A
∩Sem ψ if there is an argument 〈T , ψ〉 ∈

⋂
Sem(AFL,A(S)),

• S |∼L,A
∪Sem ψ if there is an argument 〈T , ψ〉 ∈

⋃
Sem(AFL,A(S)).

Example 2 Consider the argumentation framework of Figure 2. In this figure, the grounded extension
consists only of A0 and A>, and the naive/preferred/stable extensions are the following:

• E1 = {A>, A0, A1, A2, A4, A5, A6},

• E2 = {A>, A0, A1, A3, A4, A8},

• E3 = {A>, A0, A2, A3, A5, A7},

• E4 = {A>, A0, A1, A2, A3, A4, A5}.

Similarly, the grounded extension of the full framework AF(S1) defined in Example 1 for S1 =
{r, p, q,¬p ∨ ¬q} contains the arguments A0 and A> and the four naive/preferred/stable extensions
of AF(S1) are supersets of Ei (i = 1, 2, 3, 4). It follows that for every entailment |∼ considered in
Definition 6 we have that S1 |∼ r. The other formulas in S1 can only be credulously inferred: for every
ψ ∈ S1 − {r} and Sem ∈ {Naive,Prf,Stb} we have that S1 |∼∪Sem ψ but S1 6|∼∩Sem ψ and S1 6|∼Grd ψ.

Note 2 It is interesting to note that in the last example, Conc(E4) ` F, that is, the set of conclusions
of the arguments in E4 is not consistent. The fact that not all argumentation frameworks always result
in consistent extensions was pointed out in [37] and later extensively discussed in the literature. In
Section 7 we will discuss consistency of extensions in more detail. We just note here that in what
follows we provide two possible solutions to this phenomenon:

1. Replace Undercut by Direct Undercut as the sole attack rule. In this case E4 is no longer an
admissible extension, yet the inferred conclusions discussed in Example 2 remain the same for
the revised framework.

2. Incorporate hyperarguments instead of just arguments (see Section 6.1 and Example 17).

4 As is shown in [42, Theorem 25], the grounded extension of AF(S) is unique.
5Recall that by the definition of Grd(AFL,A(S)) it holds that T ⊆ S. The same note holds for the other items in

this definition.

6

3 Patterns of Reasoning with Maximal Consistency

In this section we consider several different patterns of reasoning with the maximally consistent sub-
sets (MCS) of the premises, and show how these patterns can be represented by argumentation-based
entailment relations. Unless otherwise stated, in this section we shall use classical logic and a propo-
sitional language with the standard interpretations of its connectives.

3.1 Basic Entailments

We start with a basic form of reasoning with maximal consistent sets, as explained in the next example.

Example 3 Consider again the set S1 = {r, p, q,¬p ∨ ¬q} from Examples 1 and 2. This set has
three maximally consistent subsets, each one contains r and two out of the three formulas in S ′1 =
{p, q,¬p∨¬q}. Intuitively, then, when all of these maximally consistent subsets are taken into account,
the only formula in S1 that can be safely inferred from S1 is r, and when some of them are considered,
any formula in S1 can be inferred from S1. This is formalized in the next definition.

Definition 7 (|∼L
∩mcs, |∼

L
∪mcs) Let S be a set of formulas. We denote by CnL(S) the transitive closure

of S with respect to the logic L and by MCSL(S) the set of all the maximally L-consistent subsets of
S (i.e., the set of the subsets T ⊆ S such that T 6`L F and T ′ `L F for any T (T ′ ⊆ S). We denote:

• S |∼L
∩mcs ψ iff ψ ∈ CnL(

⋂
MCSL(S)).

• S |∼L
∪mcs ψ iff ψ ∈

⋃
T ∈MCSL(S) CnL(T).

The entailments |∼L
∩mcs and |∼L

∪mcs are sometimes called “free” and “existential”, respectively
(see [22, 24, 67]6). In what follows, when L is clear from the context, its notation will be omitted.

Example 3 (continued) Since MCS(S1) = {{r, p, q}, {r, p,¬p ∨ ¬q}, {r, q,¬p ∨ ¬q}}, we have that
S1 |∼∩mcs r while S1 6|∼∩mcs ψ for every ψ ∈ S1 − {r}. Also, S1 |∼∪mcs ψ for every ψ ∈ S1.

As the next theorem shows, the fact that in Examples 2 and 3 we reach the same conclusions from
the same set of assertions is not a coincidence.7

Theorem 1 Let AF(S) be a logical argumentation framework for S, based on classical logic and
Undercut as the sole attack rule. Then:

1. S |∼Grd ψ iff S |∼∩Prf ψ iff S |∼∩Stb ψ iff S |∼∩mcs ψ.

2. S |∼∪Prf ψ iff S |∼∪Stb ψ iff S |∼∪mcs ψ.

Note 3 In [9] it is shown that under the conditions of the last theorem, for every T ∈ MCS(S) there
is a preferred or stable extension E of AF(S) such that E = ArgCL(T). Yet, the converse of this
result (i.e., that the stable and preferred extensions of AF(S) are of the form ArgCL(T) for some
T ∈ MCS(S)) is not true. The extension E4 of Example 2 provides a counter-example.

6All of these works refer to the particular case where L is classical logic, CL.
7The results without references in Section 3 are taken from [9].

7

3.2 Inevitable Entailments

Next, we refine the entailment relations that are considered in Definition 7. This type of relations was
introduced in [67] as the inevitable consequence.8 A motivation for this is given in the next example.

Example 4 Let S2 = {p∧ q,¬p∧ q}. Here,
⋂

MCS(S2) = ∅, and so only tautological formulas follow
according to |∼∩mcs from S2. Yet, one may argue that in this case formulas in Cn({q}) should also
follow from S2, since they follow according to classical logic from every set in MCS(S2).

The last example gives rise to the following variation of |∼L
∩mcs.

Definition 8 (|∼L
emcs) We denote: S |∼L

emcs ψ iff ψ ∈
⋂
T ∈MCSL(S) CnL(T).

Again, when L is clear from the context or when its identity does not make a difference, it will be
omitted from the notations.9

It is easy to see that if S|∼L
∩mcsψ then S|∼L

emcsψ. However, as follows from Example 4, the converse
does not hold (indeed, S2|∼emcs q while S2 6|∼∩mcs q). For another example, let S3 = {p, q, p ⊃ ¬q}.
Then S3 |∼emcs p ∨ q but S3 6|∼∩mcs p ∨ q.

A natural counterpart of Definition 6 for dealing with the entailment of Definition 8 is the following:

Definition 9 (extension-based entailments II) Let AFL,A(S) = 〈ArgL(S),Attack〉 be a logical

argumentation framework and let Sem ∈ {Naive,Prf,Stb}. We denote S |∼L,A
eSem ψ if for every E ∈

Sem(AFL,A(S)) there is an argument 〈SE , ψ〉 ∈ E for some SE ⊆ S.

Indeed, for argumentation frameworks with DirUcut as the (single) attack rule, we have the fol-
lowing counterpart of Theorem 1.

Theorem 2 Let AF(S) be a logical argumentation framework for S, based on classical logic and
Direct Undercut as the sole attack rule. Then S |∼ePrf ψ iff S |∼eStb ψ iff S |∼emcs ψ.

Note 4

1. It is interesting to note that in this case (unlike, e.g., the basic entailments; see Theorem 1),
the grounded semantics does not coincide with the stable or the preferred semantics (this is the
reason for the absence of |∼Grd from Theorem 2). Indeed, consider again the set S2 = {p∧q,¬p∧q}
from Example 4. It holds that S2 |∼eStbq while S2 6|∼Grdq (here, S2 |∼Grdψ only if ψ is a tautology).

2. As shown in [9], another way of computing |∼emcs when the set of premises is finite, is by trading
the argumentation framework of Theorem 2 by an argumentation framework with Undercut as
the sole attack rule, and in which ArgL(S) is replaced by ArgL(S∗), where S? = {φ1 ∨ . . .∨ φn |
φ1, . . . , φn ∈ S∧}, and S∧ = {

∧
S | S is a finite subset of S}.

3.3 Lifting Subset Maximality

As we show next, there may be situations in which one would like to further refine the entailment
relations considered in the last subsections.

Example 5 Consider the set S4 = {p∧q,¬p}. According to |∼∩mcs and |∼emcs only tautologies follow
from S4, while in this case one would probably like to infer q (and everything in its transitive closure).
This is possible by the following entailment relations, introduced by Benferhat, Dubois and Prade
in [23, 24].

8In [9] it is called “moderated entailment”.
9As noted before, in this section unless L is explicit, we refer to CL.

8

Definition 10 (||∼L
mcs) [23, 24] Given a logic L = 〈L,`〉, a set S of L-formulas, and an L-formula ψ,

we denote by S ||∼L
mcs ψ that the following two conditions are satisfied:

1. It holds that T ` ψ for some L-consistent subset T of S.

2. There is no L-consistent subset T ′ of S such that T ′ ` ¬ψ.

Again, in what follows we shall frequently assume that L = CL (this is also what is assumed in [23]
and [24]), in which case the superscript in the notations of the last definition will be omitted.

Note 5 If S |∼∩mcs ψ or S |∼emcs ψ, there is no consistent subset T of S such that T `CL¬ψ. Thus,
S |∼∩mcs ψ and S |∼emcs ψ imply that S ||∼mcs ψ. The next example shows that the converse does not
hold.

Example 5 (continued) We have that S4 ||∼mcs q, while (as we have noted above) according to
|∼∩mcs and |∼emcs only tautologies follow from S4.

Again, logical argumentation provides a method of computing the entailment relations of Defini-
tion 10.

Theorem 3 Let AF(S) be a logical argumentation framework for S, based on classical logic and the
attack rules Consistency Undercut and Defeating Rebuttal (ConUcut and DefReb; see Table 1). Then:
S |∼Grd ψ iff S |∼∩Prf ψ iff S |∼∩Stb ψ iff S ||∼mcs ψ.

To gain some intuition on why Consistency Undercut and Defeating Rebuttal are useful for com-
puting ||∼mcs, we revisit Example 5.

Example 5 (continued) Consider again the set S4 = {p ∧ q,¬p}. The arguments 〈p ∧ q, p〉 and
〈¬p,¬p〉 DefReb-attack each other. On the other hand, the only DefReb-attackers from Arg(S4) of
arguments in Arg(S4) whose conclusion is q are those whose premise set is S4 itself. As S4 is not
classically consistent, such attackers are counter attacked using ConUcut. It follows that arguments
like 〈p ∧ q, q〉 are in the grounded extension of the logical argumentation framework of Theorem 3,
and so in our case indeed S4 |∼Grd q.

4 Adding Priorities

The use of priorities among the assertions, e.g. to model preferences among formulas, is an important
and useful tool for representing knowledge and for non-monotonic reasoning. A wealth of research
has been conducted on the formalization of reasoning with prioritized data (see, e.g., [21, 53, 60] for
some recent overviews). Here we concentrate on extending the reasoning patterns of Section 3 to the
prioritized case.10

4.1 Priority Functions and Prioritized MCS

A common method to make precedence among the assertions at hand is by assigning them quantitative
measures, as defined next.

Definition 11 (priority function) A priority function for a language L is a function π :L 7→ Q+.
Given a set of L-formulas S = {φ1, . . . , φn}, the π-value of S is defined as a set by π(S) = {π(φ) | φ ∈
S}; as a multiset by π̈(S) = [π(φ1), . . . , π(φn)]; and as a π-vector by −→π (S), which is the tuple of the
π-values of the formulas in S, sorted in increasing order.

10Unless otherwise states, the material in this section is taken from [8].

9

Intuitively, in what follows smaller values of π will represent higher priorities. The priorities may
be provided by the reasoner, reflecting subjective preferences, or may be determined by some logical
properties of the premises, as demonstrated in the next example.

Example 6 In the context of classical logic, Konieczny, Marquis, and Vesic [54] assign to a premise
formula a score, representing the number of maximally consistent subsets it occurs in, namely:
scoreS(φ) = |{T ∈ MCS(S) | φ ∈ T }|. To get higher precedence (i.e., lower values) to formulas
with higher scores, one may define:

π(φ) =


1

|MCS(S)|+1 if ψ is a (classical) tautology,

1
scoreS(φ)

otherwise, if scoreS(φ) > 0,

2 otherwise, if scoreS(φ) = 0.

For instance, let S5 = {p, q,¬q,¬p∧¬q, p ⊃ ¬q}. Then MCSCL(S5) = {{p, q}, {p,¬q, p ⊃ ¬q}, {¬q,¬p∧
¬q, p ⊃ ¬q}}, and so π(p) = π(¬q) = π(p ⊃ ¬q) = 1

2 and π(q) = π(¬p ∧ ¬q) = 1.

A priority function π for L may be used for defining preference orders �π on sets of L-formulas.
Some examples are considered next.

Example 7 Let π be a priority function for L and S1,S2 sets of L-formulas. The following are
possible conditions for letting S1 �π S2: 11

1. S1 �mm S2 if min(π(S1)) ≤ min(π(S2)). In this case only the most preferred formulas in the
sets are compared.

2. S1 �MM S2 if max(π(S1)) ≤ max(π(S2)). Here, the least preferred formulas in the sets are
compared, thus every formula in S1 is preferred over at least one formula in S2.

3. S1 �Mm S2 if max(π(S1)) ≤ min(π(S2)). In this case all the formulas in S1 are at least as
preferred as every formula in S2.

4. S1 �mmDif S2 if min(π(S1 \ S2)) ≤ min(π(S2 \ S1)). Like �mm, the most preferred formulas are
compared, but now with respect to the set difference operator.

5. S1 �f S2 if f(πS1) ≤ f(πS2), where, for i = 1, 2, πSi ∈ {π(Si), π̈(Si),−→π (Si)} (the exact form
of πSi depends on the nature of f), and f is a numeric aggregation function (like the average,
median, summation, or the max/min functions, as in previous items).

6. S1 �s S2 if either S1 = ∅, or S1 = S2, or there is an i ∈ Q, such that:

• {ψ∈S1 |π(ψ)= i}) {ψ∈S2 |π(ψ)= i},
• {ψ∈S1 |π(ψ)=j}={ψ∈S2 |π(ψ)=j} for every j < i.

7. S1 �c S2 if either S1 = ∅, or there is an i ∈ Q such that:

• |{ψ∈S1 |π(ψ)= i}|> |{ψ∈S2 |π(ψ)= i}|,
• |{ψ∈S1 |π(ψ)=j}|= |{ψ∈S2 |π(ψ)=j}| for every j < i,

or for every i ∈ Q:

|{ψ∈S1 |π(ψ)= i}|= |{ψ∈S2 |π(ψ)= i}|.
11In this example, we let min(∅) = max(∅) = f(∅) = 0.

10

8. S1 �lex S2 if ~π(S1) is lexicographically smaller than or equal to ~π(S2).

The order relations in Example 7 are used in different contexts. Items 1–7 are considered for
prioritized logical argumentation in [8], the orderings �MM and �s are applied in [40] (see Section 5.2
for more details), and �lex is used in [54]. The order relations in Items 6 and 7 are inspired by Brewka’s
approach to reasoning with preferred theories [34]. This approach is adjusted to our case by viewing
the arguments’ support sets as stratified theories, where each stratification consists of the formulas
with the same π-value. Accordingly, �s is a subset-inclusion comparison, and �c is a comparison by
cardinality. General considerations on which order to use for particular cases are beyond the scope of
this paper. Such considerations (for abstract argumentation frameworks) are given, e.g., in [21, 53].

Note 6 If S1 �π S2 we shall sometimes write S1 =π S2 and S1 ≺π S2 to indicate, respectively, that
S2 �π S1 and that S2 6�π S1. Now,

1. Items 1, 2, 4, 6, 7 and 8 of Example 7 describe pre-orders, that is: �π is reflexive (S �π S)
and transitive (if S1 �π S2 and S2 �π S3 then S1 �π S3). Whether the relation in Item 5 is a
pre-order depends on the function f .

2. The orders in Items 1, 4, 6, 7 and 8 and their strict counterparts are also left monotonic: if
S1 �π T (respectively, if S1 ≺π T) and S1 ⊆ S2, then S2 �π T (respectively, then S2 ≺π T).

Given a priority function π for L and a corresponding preference order �π on sets of L-formulas
(like those in Example 7) we lift �π to arguments as follows:

A1 ≤π A2 iff Sup(A1) �π Sup(A2). (1)

Intuitively, A1 ≤π A2 indicates that the argument A1 is at least as preferred as the argument A2. In
the sequel, we shall sometimes remove the subscript π when the priority function is known or fixed.

Example 8 In Example 1, let π(r) = 1, π(p) = 2, π(q) = 3 and π(¬p ∨ ¬q) = 4. Then, according to
the instances for �π from Example 7, we have that:

1. When the most preferred supports are compared we have that A0 <mm A1 <mm A2 <mm A3,
A1 <mm A7, A8 <mm A2, A6 <mm A3, and A6 =mm A8.

2. When the least preferred supports are compared we still have A0 <MM A1 <MM A2 <MM A3,
A1 <MM A7 and A6 <MM A3, but now A2 <MM A8 and only A6 <MM A8.

3. The max-min-comparison yields again A0 <Mm A1 <Mm A2 <Mm A3, A1 <Mm A7 and A6 <Mm

A3, but this time A2 and A6 are ≤Mm-incomparable with A8.

4. When the comparison takes place on the difference of the support sets, we have that A0 <mmDif

A1 <mmDif A2 <mmDif A3, A1 <mmDif A7, A8 <mmDif A2 and A6 <mmDif A3, since the restriction
on the support set has no effect here, and so the comparison is the same as the first item.
However, A6 <mmDif A8, since π(p) < π(¬p ∨ ¬q),

5. If f(S) = 1
|S|

∑
φ∈S π(φ), then A2 =f A8 and A6 <f A8.

6. According to �s, we have that A8 <s A2 and A6 <s A8.

7. Similarly, according to �c, we have: A8 <c A2 and A6 <c A8.

8. The same holds for the lexicographic order: A8 <lex A2 and A6 <lex A8.

Since A> has an empty support set, we have that A> < Ai for every 1 ≤ i ≤ 8 and every �π.

11

For reasoning with maximally consistent subsets in the prioritized case we now have to take into
account also the priority function π. The set of the �π-most preferred maximally consistent subsets
of S is defined as follows:

Definition 12 (prioritized MCS) Given a logic L = 〈L,`〉, a set S of L-formulas, and a preference
order � (induced from a priority function π), we define:

MCS�L (S) = {T ∈ MCSL(S) | there is no T ′ ∈ MCSL(S) such that T ′ ≺ T }.

Example 9 As noted in Example 3, MCSCL(S1) = {{r, p, q}, {r, p,¬p ∨ ¬q}, {r, q,¬p ∨ ¬q}}. Thus,
using the priority assignment π from Example 8 on S1, we have that according to the preference orders
of Items 2, 4, 5 (where f is the average function), 6, 7 and 8 of Example 7, MCS�πCL (S1) = {{r, p, q}},
while according to Item 1 of the same example, MCS�πCL (S1) = {{r, p, q}, {r, p,¬p ∨ ¬q}}.

Example 10 Recall the priority assignment π on S5 from Example 6, and consider the preference
order �lex from Item 8 of Example 7. As noted in Example 6, MCSCL(S5) consists of three sets:
T1 = {p, q}, T2 = {p,¬q, p ⊃ ¬q}, and T3 = {¬q,¬p ∧ ¬q, p ⊃ ¬q}. Their corresponding π-vectors are

~π(T1) = (1
2 , 1), ~π(T2) = (1

2 ,
1
2 ,

1
2) and ~π(T3) = (1

2 ,
1
2 , 1). Thus, MCS�lex

CL (S5) = {T2}. This is the same
set of preferred MCSs, obtained in [54] for S5.

Now we can consider the prioritized versions of the entailment relations from Definitions 7 and 8.

Definition 13 (|∼L,�π
∩mcs , |∼

L,�π
∪mcs , |∼

L,�π
emcs) Let S be a set of L-formulas, π a priority function on L, and

�π a corresponding preference order. We denote:

• S |∼L,�π
∩mcs ψ iff ψ ∈ CnL(

⋂
MCS�πL (S)).

• S |∼L,�π
∪mcs ψ iff ψ ∈

⋃
T ∈MCS�πL (S) CnL(T).

• S |∼L,�π
emcs ψ iff ψ ∈

⋂
T ∈MCS�πL (S) CnL(T).

Again, whenever possible we shall omit the superscript L from the notations of the entailments.

Example 11 In Example 9 we have that S1 |∼∪mcs ψ for every ψ ∈ S1, but S1 |∼? φ when ? ∈
{∩mcs,emcs} only if φ ∈ CNCL({r}) (since

⋂
MCSCL(S1) = {r}). In the prioritized case, when � is

defined as in Items 2, 4, 5 (for the average function), 6, 7 and 8 of Example 7, we have that S1 |∼�? φ
for every ? ∈ {∩mcs,∪mcs,emcs} and φ ∈ {p, q, r}. If ≤π is as in Item 1 of Example 7, then S1 |∼�? p
and S1 |∼�? r for ? ∈ {∩mcs,emcs} and S1 |∼�∪mcs φ for every φ ∈ S1.

In Example 10, for every ? ∈ {∩mcs,∪mcs,emcs} we have that S5 |∼�lex

?mcs φ iff φ ∈ CnCL(T2).

In the next section we show how reasoning with the entailments of Definition 13 can be represented
by (Dung semantics for) logical argumentation.

4.2 Prioritized Argumentation Frameworks

The definition of a logical argumentation framework, now with a priority function, is very similar to
the one given in Definition 4, except that now the attacking arguments must be at least as preferred
as the attacked arguments:

12

Definition 14 (prioritized argumentation framework) Let L = 〈L,`〉 be a logic, A a set of
attack rules with respect to L, π a priority function on L, and ≤π a corresponding preference order
on L-arguments (defined according to (1) above). Let also S be a set of L-formulas. The priori-

tized (logical) argumentation framework for S, induced by L, A, and ≤π, is the triple AF≤πL,A(S) =
〈ArgL(S),Attack ,≤π〉, where ArgL(S) is the set of the L-arguments whose supports are subsets of S,
and Attack is a relation on ArgL(S)× ArgL(S), defined by (A1, A2) ∈ Attack iff A1 ≤π A2 and there
is some R ∈ A such that A1 R-attacks A2 (in which case we shall say that A1 R≤π -attacks A2).

As before, we will omit the subscripts L, A and/or π if they are known or arbitrary.

Example 12 Consider a prioritized framework for S1 = {r, p, q,¬p∨¬q}, based on CL and Undercut
as the sole attack rule. The flat case (i.e., when all the arguments have the same priority) is the same
as the framework of Example 1 (see Figure 2). Suppose now that the π-assignment from Example 8
and �s (the preference order in Item 6 of Example 7) are used. Figure 3 depicts (part of) the
corresponding prioritized framework. In this case, A1 and A2 are no longer attacked, and while A4

and A7 R-attack each other in the original framework, in the prioritized setting A4 R≤π -attacks A7

but not vice versa. Indeed, {p} = {ψ ∈ Sup(A4) | π(ψ) = 2}) {ψ ∈ Sup(A7) | π(ψ) = 2} = ∅.

A1A4

A2A5

A6 A3

A7

A8 A>

A⊥A0

Figure 3: Part of the prioritized argumentation framework for S1 = {r, p, q,¬p ∨ ¬q} and �s (Exam-
ple 12).

The Dung-style semantics for the prioritized case is defined as in Definition 5, and so are the
entailment relations, which are the following counterparts of those in Definitions 6 and 9.

Definition 15 (entailments for prioritized AF) Let AF≤L,A(S) be a prioritized logical argumen-

tation framework, Sem ∈ {Naive,Grd,Prf,Stb}, and ? ∈ {∪,∩,e}. The entailment relations |∼L,A,≤
?Sem

are defined just as |∼L,A
?Sem, but with respect to AF≤L,A(S) instead of AFL,A(S).

Example 13 Consider again a prioritized argumentation framework for S1 = {r, p, q,¬p∨¬q}, based
on CL and Undercut as the sole attack rule. When using the priority function π from Example 8, in
any of the definitions for �π from Example 7, A0 and A1 cannot be attacked. Thus, S1 |∼≤πGrd r and

S1 |∼≤πGrd p. Concerning q, the result depends on the choice of �π (which determines the preference
order ≤π on arguments by (1)):

• When using �mm (Item 1 of Example 7) A8 ≤π A, for any A ∈ {〈S, ψ〉 | ∅ (S ⊆ S1}. Moreover,
since A6 and A8 attack each other, one can construct two different admissible sets, one in which
A6 defends A and one in which it does not. Therefore, S1 6|∼≤mm

Grd q.

• According to �mmDif and �s (Items 4 and 6, respectively, of Example 7), A8 does not attack
A6, thus A6 is no longer attacked, and so it defends A2. Hence, in this case, S1 |∼?Grd q for
? ∈ {≤mmDif ,≤s}.

13

4.3 Relating the Two Approaches

We now show the correspondence between the MCS-based entailments for prioritized assertions (Defi-
nition 13) and entailments that are induced by prioritized argumentation frameworks (Definition 15).
The two kinds of entailments coincide under the following conditions.

1. The base logic is contrapositive:
For every T ′ ⊆ T and S ′ ⊆ S it holds that T ` ¬

∧
S iff T \ T ′,S ′ ` ¬

∧
((S \ S ′) ∪ T ′).

2. The preference order is left monotonic:
If S1 �π T and S1 ⊆ S2, then S2 �π T .

Both of the conditions above are quite common. For instance, classical logic CL, intuitionistic logic
(the central logic in the family of constructive logics), and normal modal logics, are all contrapositive.
The preference orders in Items 1, 4, 6, 7 and 8 of Example 7 are left monotonic.

Theorem 4 Let AF≤L,A(S) be a prioritized argumentation framework for a finite S, based on a con-
trapositive propositional logic L, the set A of the attack rules DirUcut and ConUcut (Table 1), and
a preference order ≤ on the arguments that is induced by a left monotonic order � according to (1).
Then:

1. S |∼≤∩Grd ψ iff S |∼≤∩Prf ψ iff S |∼≤∩Stb ψ iff S |∼≤∩mcs ψ.

2. S |∼≤∪Prf ψ iff S |∼≤∪Stb ψ iff S |∼≤∪mcs ψ.

3. S |∼≤ePrf ψ iff S |∼≤eStb ψ iff S |∼≤emcs ψ.

Note 7 The requirement that S is finite is indeed necessary for Theorem 4. To see this, let S = {pi |
i ≥ 1} ∪ {q,¬q}, and suppose that ∀i ≥ 1 π(pi) = 1, π(q) = 2, and π(¬q) = 3. Consider now the

prioritized argumentation framework AF≤sCL,A(S), where the preference relation ≤s is defined by (1)
and the order �s of Example 7, and where A consists of the attack rules DirUcut and ConUcut.
Denote: S1 = {pi | i ≥ 1} ∪ {q} and S2 = {pi | i ≥ 1} ∪ {¬q}. Then it is easy to see that

MCS(S) = {S1,S2} and MCS�s{S1}. Thus, for instance, S |∼≤s∩mcs q. Yet, we have that S 6|∼≤s∩Stb q,
since ArgCL(S2) ∈ Stb(S). Indeed, every argument 〈T ∪ {q}, {ψ}〉 ∈ ArgCL(S \ S2) where T ⊆ S is
attacked by 〈T ∪ {pk,¬q}, {¬q}〉 ∈ ArgCL(S2) where pk 6∈ T .12

Note 8 Consider the degenerate priority and preference orders π, �π, and ≤π, in which all the
formulas, sets of formulas, and argument (respectively) have the same priority/preference. As �π is
in particular left-monotonic, we get as a particular case of Theorem 4 the following corollary for the
flat case and any contrapositive logic:

Corollary 1 Let AFL,A(S) be a logical argumentation framework for a finite S, based on a contra-
positive propositional logic L and a set A of the attack rules DirUcut and ConUcut. Then:

1. S |∼∩Grd ψ iff S |∼∩Prf ψ iff S |∼∩Stb ψ iff S |∼∩mcs ψ.

2. S |∼∪Prf ψ iff S |∼∪Stb ψ iff S |∼∪mcs ψ.

3. S |∼ePrf ψ iff S |∼eStb ψ iff S |∼emcs ψ.

12By reflexivity, the latter is obviously an argument in ArgCL(S2). Moreover, it attacks 〈T ∪ {q}, {ψ}〉, since T ∪
{pk,¬q} ≤s T ∪ {q} for every pk 6∈ T .

14

Note 9 The contraposition requirement on the underlying logic is essential for the last corollary. To
see this, consider Asenjo-Priest’s 3-valued logic LP [15, 65, 66]. This logic consists of the truth values
t, f and >, where intuitively t represents truth, f represents falsity, and > represents conflicting
(i.e., both true and false) situations. In LP, both t and > are designated (i.e., formulas having these
values are considered valid) and f is non-designated. The language of LP consists of the connectives
{¬,∨,∧}, where it holds that ¬t = f , ¬f = t, ¬> = >, and the interpretations of ∨ and ∧ are given,
respectively, by the maximum and the minimum function on the order f < > < t. An interpretation
ν is a model of a formula ψ if ν(ψ) is designated (i.e., if ν(ψ) = t or ν(ψ) = >).

Now, LP is not contrapositive. Indeed, p, q `LP p ∧ q, but p,¬(p ∧ q) 6`LP ¬q (a counter-model
assigns > to p and t to q), and so Corollary 1 cannot be applied to it. Consider for instance the
set S = {p,¬p}. In LP this set (as well as any other set) is consistent (and even satisfiable, as the
valuation ν that assigns > to p is a model of S), thus MCS(S) = {S}. It follows (by the reflexivity
of `LP) that S |∼∩mcs p and S |∼∩mcs ¬p, yet S 6|∼Grd p and S 6|∼Grd ¬p, since Grd(S) consists only of
tautological arguments.

5 Using Strict and Defeasible Assertions

A common practice in argumentation theory is to distinguish between strict and defeasible assertions.
The former are taken for granted and so cannot be challenged (i.e, attacked), while the latter are
debatable and so are attackable. According to the reasoning methods considered in Section 3, all the
arguments are defeasible. One way of making a distinction between strict and defeasible arguments
is to use the methods considered in Section 4, giving precedence to strict arguments over defeasible
ones. Yet, these methods involve extra machinery already in the representation level, and do not
necessarily avoid situations in which there are attacks among strict arguments. In this section we
consider approaches in which strict and defeasible assumptions are totally separated, implemented
by three instances of logical argumentation: assumption-based argumentation (ABA) frameworks,
dialectical argumentation, and ASPIC systems. We show that these settings also have tight links to
reasoning with maximal consistency.

5.1 Assumption-Based Frameworks

First, we examine the relations between entailments induced by assumption-based frameworks and
MCS-based reasoning.13 The next definition is a generalization of the definition from [29].

Definition 16 (assumption-based framework) An assumption-based framework (ABF, for short)
is a tuple ABF = 〈L,S, Ab,∼〉 where:

• L = 〈L,`〉 is a propositional logic,

• S (the strict assumptions) and Ab (the candidate/defeasible assumptions) are distinct (count-
able) sets of L-formulas, where the former is assumed to be `-consistent and the latter is assumed
to be nonempty,

• ∼ : Ab→ ℘(L) is a contrariness operator, assigning a finite set of L-formulas to every defeasible
assumption in Ab, such that for every ψ ∈ Ab for which ψ 6` F, it holds that ψ 6`

∧
∼ ψ and∧

∼ψ 6` ψ.

Note 10 Unlike the setting of [29], an ABF according to the definition above may be based on any
propositional logic L. Also, the strict as well as the candidate assumptions are formulas that may not

13Unless otherwise states, the material in this section is taken from [49].

15

be just atomic. Concerning the contrariness operator, note that it is not a connective of L, as it is
restricted only to the candidate assumptions.

Defeasible assertions in an ABF may be attacked in the presence of counter defeasible information.
This is described in the next definition.

Definition 17 (attacks in ABFs) Let ABF = 〈L,S, Ab,∼〉 be an assumption-based framework,
∆,Θ ⊆ Ab, and ψ ∈ Ab. We say that ∆ attacks ψ iff S,∆ ` φ for some φ ∈ ∼ ψ. Accordingly, ∆
attacks Θ if ∆ attacks some ψ ∈ Θ.

The semantics of ABFs is similar to the one in Definition 5, reflecting the fact that only the
elements of Ab are attackable.

Definition 18 (semantics for ABFs) ([29], see also [38, 71]) Let ABF = 〈L,S, Ab,∼〉 be an
assumption-based framework, and let ∆ ⊆ Ab. Below, maximum and minimum are taken with
respect to set inclusion.

• ∆ is closed (with respect to ABF), iff ∆ = Ab ∩ CnL(S ∪∆).

• ∆ is conflict-free (with respect to ABF), iff there is no ∆′ ⊆ ∆ that attacks some ψ ∈ ∆.

• ∆ is naive (with respect to ABF), iff it is closed and maximally conflict-free.

• ∆ defends (with respect to ABF) a set ∆′ ⊆ Ab, iff for every closed set Θ that attacks ∆′ there
is a set ∆′′ ⊆ ∆ that attacks Θ.

• ∆ is admissible (with respect to ABF), iff it is closed, conflict-free, and defends every ∆′ ⊆ ∆.

• ∆ is complete (with respect to ABF), iff it is admissible and contains every ∆′ ⊆ Ab that it
defends.

• ∆ is grounded (with respect to ABF), iff it is minimally complete.

• ∆ is preferred (with respect to ABF), iff it is maximally admissible.

• ∆ is stable (with respect to ABF), iff it is conflict-free, and attacks every ψ ∈ Ab \∆.

As before, we denote by Naive(ABF) [respectively: Adm(ABF), Cmp(ABF), Grd(ABF), Prf(ABF)
and Stb(ABF)] the set of all the naive [respectively: admissible, complete, grounded, preferred and
stable] extensions of ABF . The induced entailments are defined as in Definition 6. For an assumption-
based framework ABF = 〈L,S, Ab,∼〉 and Sem ∈ {Naive,Grd,Prf,Stb} we denote:

• S]Ab |∼L
∩Sem ψ if S,∆ ` ψ for every ∆ ∈

⋂
Sem(ABF).

• S]Ab |∼L
eSem ψ if S,∆ ` ψ for every ∆ ∈ Sem(ABF).

• S]Ab |∼L
∪Sem ψ if S,∆ ` ψ for some ∆ ∈ Sem(ABF).

Note that in the definition above, unlike the previous definitions of the entailment relations, we use
the symbol] instead of the comma, to distinguish between the strict and the defeasible assumptions.
As before, to shorten a bit the notations, we shall sometimes omit the symbol for the base logics,
which will be clear from the context.

In what follows we shall concentrate on simple contrapositive ABFs. These are assumption-based
frameworks of the following form:

16

1. The base logic L is contrapositive (recall Item 1 in Section 4.3) and explosive (for every L-
formulas ψ, φ it holds that ψ,¬ψ ` φ),14

2. The contrariness operator is defined by the negation connective: for every ψ ∈ Ab, ∼ψ = {¬ψ}.
As before, we shall now show the correspondence between Dung’s semantics and MCS-based rea-

soning, this time for simple contrapositive ABFs. Given an assumption-based framework ABF =
〈L,S, Ab,∼〉, the set of all the maximally L-consistent subsets of Ab with respect to S is defined by

MCS(ABF) = {S ∪ T | T ⊆ Ab and S ∪ T 6` F and S ∪ T ′ ` F for every T (T ′ ⊆ Ab}.

The induced entailment relations are defined by:

• S]Ab |∼L
∩mcs ψ iff ψ ∈ CnL(

⋂
MCS(ABF)) (that is,

⋂
MCS(ABF) ` ψ).

• S]Ab |∼L
emcs ψ iff ψ ∈

⋂
T ∈MCS(ABF) CnL(T) (that is, ∆ ` ψ for every ∆ ∈ MCS(ABF)).

• S]Ab |∼L
∪mcs ψ iff ψ ∈

⋃
T ∈MCS(ABF) CnL(T) (that is, ∆ ` ψ for some ∆ ∈ MCS(ABF)).

Theorem 5 Let ABF = 〈L,S, Ab,∼〉 be a simple contrapositive assumption-based framework. Then:

1. S]Ab |∼L
ePrf ψ iff S]Ab |∼L

eStb ψ iff S]Ab |∼L
emcs ψ.

2. S]Ab |∼L
∪Prf ψ iff S]Ab |∼L

∪Stb ψ iff S]Ab |∼L
∪mcs ψ.

3. If F ∈ Ab then S]Ab |∼L
∩Grd ψ iff S]Ab |∼L

∩mcs ψ.

Note 11 Item 3 in Theorem 5 follows from the fact that under the conditions of the theorem it holds
that Grd(ABF) =

⋂
MCS(ABF) (see [49]). To see that the condition F ∈ Ab is indeed necessary for

this, consider the following example (taken from [49]):

Example 14 Let ABF = 〈L,S, Ab,∼〉 be a simple contrapositive assumption-based framework for
L = CL, S = ∅, and Ab = {p,¬p, q}. A corresponding attack diagram is shown in Figure 4.

p,¬p, q q

pp, q

¬p¬p, q

Figure 4: Attack diagram for S = ∅ and Ab = {p,¬p, q} (Example 14).

Note that the grounded set of assumptions in this case is the empty set, since there are no
unattacked arguments. However,

⋂
MCS(ABF) = {q}. This may be intuitively explained by the

fact that the inconsistent set {p,¬p, q} contaminates the argumentation framework, thus keeping q
out of the grounded set of assumptions.

Consider now the same ABF, except that F is added to Ab. Note that {p,¬p} ` F and consequently
{p,¬p} is not closed, whereas {p,¬p, q,F} is closed. Furthermore, ∅ ` ¬F and so the grounded set of
assumptions is {q}, as depicted by the attack diagram, shown in Figure 5.

14Again, classical logic, intuitionistic logic and standard modal logics are notable examples for logics that are both
contrapositive and explosive.

17

∅ p,¬p, q,F q

pp, q

¬p¬p, q

Figure 5: Attack diagram for S = ∅ and Ab = {p,¬p, q,F} (Example 14).

Note 12 The condition in Item 3 of Theorem 5 that F ∈ Ab, may be lifted under the generalized
attacks considered in [50]: a set ∆ ⊆ Ab disjunctively attacks a set Θ ⊆ Ab, if there is a finite subset
Θ′ ⊆ Θ such that S,∆ `

∨
¬Θ′ (cf. Definition 17). Indeed, it is shown in [50] that for every simple

contrapositive ABF with disjunctive attacks, and where the base logic satisfied de-Morgan’s laws∨
¬∆ ` ¬

∧
∆ and ¬

∧
∆ `

∨
¬∆, a similar result as that of Theorem 5 still holds even when F 6∈ Ab.

Note 13 Items 1 and 2 of Theorem 5 were independently shown in [30], where in addition it is also

proved that for a contrapositive L it holds that S]Ab |∼L
∩Prfψ iff S]Ab |∼L

∩Stbψ iff S]Ab |∼L
∩mcsψ. The

idea there is to consider logical argumentation frameworks that consist of (extended) arguments of
the form 〈S]Ab, ψ〉 (cf. Definition 2), whose support sets consist of non-attackable (strict) formulas
(S), and attackable (defeasible) formulas (Ab).

5.2 Dialectical Argumentation

Another setting in which arguments’ supports consist of two different sets is considered in [39, 40],
where D’Agostino and Modgil present a different way of lifting the set minimality and consistency
restrictions of classical arguments (Definition 3). The splitting of the supports of the arguments
to two disjoint sets is intuitively understood as follows: “An argument entails a conclusion from
assumptions regarded as premises assumed to be true, and assumptions that are supposed true for the
sake of argument (i.e., those premises that an interlocutor commits to)” [40]. In the structures that
are obtained in this way, called dialectical argumentation frameworks, Brewka’s order on preferred
subtheories [34] (recall Example 7, Item 7) can be represented.15

Definition 19 (dialectical argument) A dialectical argument is a triple A = 〈S, T , ψ〉, where S
and T are disjoint sets of CL-formulas and ψ is a CL-formula, such that S ∪ T ` ψ. We denote:
Sup(A) = S, Asm(A) = T and Conc(A) = ψ.16

The dialectical arguments that are based on a set S of CL-formulas (i.e., the arguments A for
which Sup(A) ∪ Asm(A) ⊆ S) are denoted by Argdial(S). Also, in what follows we shall sometimes
write φ = −ψ to indicate that φ = ¬ψ or ψ = ¬φ.

Example 15 Let S6 = {p,¬p, q}. The following dialectical arguments are some elements in Argdial(S6):17

A1 = 〈p, ∅, p〉, A2 = 〈¬p, ∅,¬p〉, A3 = 〈{p,¬p}, ∅,F〉, A4 = 〈∅, {p,¬p},F〉, A5 = 〈q, ∅, q〉
15The notions and results in this section are taken from [40]; Notations are adjusted to this paper.
16In [39] the second component of a dialectical argument is called supposition. Here we denote it by Asm (for

assumptions), to avoid confusion with Sup.
17Here and in what follows we omit the set signs when the assumptions or support of the arguments are singletons.

18

Given a priority function π over CL-formulas and a corresponding preference orders �π on sets of
CL-formulas (like those in Example 7), we lift �π to dialectical arguments as follows (cf. (1) above): 18

A1 ≤π A2 iff Sup(A1) ∪ Asm(A1) �π Sup(A2) ∪ Asm(A2). (2)

The notion of dialectical defeat (attack) is defined accordingly as follows:

Definition 20 (attack and defeat) Let Argdial(S) be a set of dialectical arguments based on S, π
a priority function, and ≤π a corresponding preference order on Argdial(S) (defined according to (2)
above). Let A = 〈S, T , ψ〉 andB = 〈S ′, T ′, ψ′〉 be dialectical arguments, and suppose that {A,B}∪E ⊆
Argdial(S). Then:

• A attacks B, if:

1. ψ = F, or

2. ψ = −φ for some φ ∈ S ′.

• A defeats B, if:

1. ψ = F and S = ∅, or

2. ψ = −φ for some φ ∈ S ′ and A 6>π 〈{φ}, ∅, φ〉.19

• A defeats B with respect to E , if A defeats B, and Asm(A) ⊆ Sup(B) ∪ Sup(E).

Definition 21 (dialectical argumentation framework) Let π a priority function on L, and ≤π
a corresponding preference order on dialectical arguments (defined according to (2) above). Let also
S be a set of CL-formulas. The dialectical (logical) argumentation framework for S, induced by ≤π,

is the triple AF≤πdial (S) = 〈Argdial(S),Attack ,≤π〉, where Attack is the dialectical defeat relation on
Argdial(S)× Argdial(S) as defined in Definition 20.

Definition 22 (dialectical argumentation semantics) Let AF≤πdial (S) = 〈Argdial(S),Attack ,≤π〉
be a dialectical argumentation framework (for S, induced by ≤π) and E ⊆ Argdial(S). Then:

• E is dialectical conflict-free, iff there are no A,B ∈ E such that A defeats B with respect to E .

• B is acceptable with respect to E , if for every A that defeats B with respect to E , there is a C ∈ E
that defeats A with respect to {A}.20

• E is dialectically admissible (with respect to AF≤πdial (S)), iff every A ∈ E is dialectically acceptable
with respect to E .

• E is dialectically complete (with respect to AF≤πdial (S)), iff it is dialectically admissible and for
every A ∈ Argdial(S), if A is dialectically acceptable with respect to E , then A ∈ E .

• A maximal complete extension ofAF≤πdial (S) is called a dialectically preferred extension ofAF≤πdial (S).

18In [40], instantiations are allowed with any preference relation � that satisfies the following requirement: if S1∪T1 =
S2 ∪T2 and S3 ∪T3 = S4 ∪T4 then 〈S1, T1, φ1〉 � 〈S3, T3, φ3〉 iff 〈S2, T2, φ2〉 � 〈S4, T4, φ4〉 (i.e., the preference ordering
is invariant under the distinction between assumptions and support). Clearly Condition (2), formulated to retain
uniformity and simplicity, satisfies this requirement.

19We note that in [39, 40] the preference order is reversed (meaning that higher values correspond to higher priorities),
and so is the second condition in this item. We reversed the original order to keep the intuitive meaning of preference
orders the same as those in Section 4.

20We note that C defeats A with respect to {A} iff it defeats A with respect to ∅.

19

• A dialectically conflict-free extension E of AF≤πdial (S) is called a dialectically stable extension of

AF≤πdial (S), iff E ∪ E+ = Argdial(S).

As before, we denote the set of preferred (respectively, stable) extensions ofAF≤πdial (S) by Prf(AF≤πdial (S))

(respectively, Stb(AF≤πdial (S))).

Now we can consider the dialectical versions of the entailment relations from Definitions 7. Note
that entailment is defined by taking into account arguments with the empty set of assumptions only.

Definition 23 (extension-based entailments) LetAF≤πdial (S) be a dialectical argumentation frame-
work, and let Sem ∈ {Prf,Stb}. We denote:

• S |∼dial,≤π
∩Sem ψ if there is a dialectical argument 〈T , ∅, ψ〉 ∈

⋂
Sem(AF≤πdial (S)),

• S |∼dial,≤π
∪Sem ψ if there is an argument 〈T , ∅, ψ〉 ∈

⋃
Sem(AF≤πdial (S)).

Example 16 Consider again Example 15 and suppose that all the arguments have the same priority.
Below are some observations concerning the induced dialectical framework (for the non-prioritized
case):

1. Since A4 has the empty set as a support and its conclusion is F, it defeats A1, A2, A3 and A5.

2. A4 defeats A3 with respect to the empty set of arguments.

3. A4 defeats A1 with respect to {A2}, since Asm(A4) ⊆ Sup(A1) ∪ Sup(A2) (note that A4 does
not defeat A1 with respect to the empty set, since Asm(A4) 6⊆ Sup(A1)).

4. Similarly, A4 defeats A2 with respect to {A1}.

5. A3 defeats itself with respect to the empty set of arguments since its conclusion is F and
Asm(A3) ⊆ Sup(A3).

6. Since A3 defeat itself, any set containing A3 cannot be dialectically conflict-free.

7. Since A4 has the empty set as a support, it cannot be defeated. This means that A4 is always
acceptable. In view of this and Item 2, A3 cannot be part of any dialectically admissible set.

8. A1 defeats A2 with respect to the empty set. Indeed, A1 concludes p, thus it attacks A2, and
since all arguments have the same priority, this attack results in a defeat. This defeat is with
respect to the empty set, since Asm(A1) = ∅.

9. Analogously, A2 defeats A1 with respect to the empty set.

10. A5 is not defeated (with respect to the empty set), and so it is always acceptable. Note that
the only defeat of A5 is by A4, but this defeat does not hold with respect to the empty set but
only with respect to a set of arguments that includes p and ¬p as assumptions.

The observations above imply that there are two dialectically preferred sets in this case: one contains
A1, A4 and A5, and the other one contains A2, A4 and A5. Notice that these sets are dialectically
stable as well. It follows that for a uniform π and for Sem ∈ {Prf,Stb}, we have that p,¬p, q 6 |∼dial,≤π

∩Sem p

and p,¬p, q |∼dial,≤π
∪Sem p. The same holds when ¬p is inferred. On the other hand, p,¬p, q |∼dial,≤π

∩Sem q.

Note 14 The example above indicates that in dialectical frameworks it is not necessary to use an
attack like consistency undercut (ConUcut; see Table 1) to filter out inconsistent arguments, since an
argument like A4 filters out any inconsistent argument (like A3).

20

We are now ready to show the correspondence between reasoning with preferred subtheories over
the most consistent subsets of the premises, and dialectical frameworks using the <MM ordering
(obtained by Equation (2) from Item 2 of Example 7) and assuming a total order over the premises.

Theorem 6 Let AF<MM

dial (S) be a dialectical framework for a finite S, where <MM is the preference
order, obtained by (2) and �MM (Item 2 of Example 7), using a total priority order π on the formulas
in S. Then:

1. S |∼dial,<MM

∩Prf ψ iff S |∼dial,<MM

∩Stb ψ iff S |∼�s∩mcs ψ.

2. S |∼dial,<MM

∪Prf ψ iff S |∼dial,<MM

∪Stb ψ iff S |∼�s∪mcs ψ.

Note 15 The grounded semantics in this case is yet to be investigated.

5.3 ASPIC+

ASPIC is a family of well-known, widely used and conceptually rich formalisms for logical argumen-
tation, which also make a distinction between strict and defeasible assumptions. These formalisms
include, among others, ASPIC+ [58, 59], ASPIC− [36], ASPIC	 [52] and ASPICEND [41]. In the con-
text of this survey, we restrict our attention to ASPIC+, which allows for preferences over defeasible
premises and makes use of attacks of the form of restricted rebut and undermining (see [58, 59]). In
more details, in ASPIC+ arguments are built by constructing inference trees with strict and/or defea-
sible premises as leaves, and consequents of strict rules as non-leaf nodes.21 An argument undermines
another argument (in φ) iff the attacker concludes ∼φ for some defeasible premise φ occurring as a
leaf in the attacked argument. Furthermore, defeat is determined as in Definition 14: an argument
A defeats another argument B iff A undermines B (in φ) and B 6< φ according to the weakest link
lifting (see Item 2 in Example 7). In [58] Modgil and Prakken show that for such frameworks, the
preferred and stable extensions coincide and correspond to the set of preferred sub-theories of the set
of premises under consideration (see [34] and Item 7 in Example 7). It follows that they provide a
result that can be linked to Theorem 4 (where �s is the preference order) and Theorem 6. Moreover,
in [51, 62] it has been shown that ASPIC+ and ABA are equi-expressive (when not taking into account
priorities). Thus, the results from [49], stated in Section 5, carry over to ASPIC+. This includes as
a special case ASPIC+-knowledge-bases without any defeasible rules (but a possibly nonempty set of
defeasible premises), which is exactly the setting of this survey.

6 Further Generalizations

In this section we consider two further generalizations to the settings described in the previous sections:
one extends the notion of an argument and the other one relaxes the notion of consistency.

6.1 Hyperarguments

The following notion, corresponding to the notion of a hypersequent in the context of proof theory
(see [16]), is a natural extension of the notion of an argument (cf. Definition 2).

Definition 24 (hyperargument) Given a logic L = 〈L,`〉, an L-hyperargument (a hyperargument
for short) is an expression of the form H = 〈S1, ψ1 | . . . | Sn, ψn〉, where | is a new symbol, not
appearing in L, and S1, . . . ,Sn ` ψ1∨ . . .∨ψn. A pair Si, ψi (1 ≤ i ≤ n) is called a component of H.22

21That is, a non-leaf node A can be connected to leafs A1, . . . , An iff A1, . . . , An → A is a strict rule.
22In practice, the components are usually produced by a calculus for the core logic. For more details on this see [33].

21

The common, intuitive interpretation of the sign “|” is by disjunction. Note, in particular, that
an L-argument is a special case of an L-hyperargument (when n = 1).

Given a hyperargument H = 〈S1, ψ1 | . . . | Sn, ψn〉, the support set (or the premise set) of H is
Sup(H) = {S1, . . . ,Sn}, and the conclusion of H is the formula Conc(H) = ψ1∨ . . .∨ψn. Accordingly,
attack rules may be extended to hyperarguments as demonstrated in Table 2 (cf. Table 1).

Rule Name Acronym Attacker Attacked Attack Conditions

H-Defeat H-Def H1 H2 ` Conc(H1) ⊃ ¬
∧
Si (Si 6= ∅)

H-Undercut H-Ucut H1 H2 ` Conc(H1)↔ ¬
∧
S ′i (Si ⊇ S ′i 6= ∅)

H-Direct Undercut H-DirUcut H1 H2 ` Conc(H1)↔ ¬ψ (∃i ψ ∈ Si)

H-Consistency Undercut H-ConUcut H2 ` ¬
∧⋃n

i−=1 Si (
⋃n
i=1 Si 6= ∅)

H-Rebuttal H-Reb H1 H2 ` Conc(H1)↔ ¬ψi (〈Si, ψi〉 in H2)

Table 2: Attack rules for hyperarguments. In the table, H1 and H2 denote hyperarguments, where
Sup(H2) = {S1, . . . ,Sn} and 1 ≤ i ≤ n.

Hyperargument-based logical frameworks are now defined just as ordinary logical argumentation
frameworks (Definition 4), where arguments are replaced by hyperarguments and attack rules for
arguments are traded by attack rules for hyperarguments. Dung’s semantics and the entailments
relations induced by such frameworks are defined just as in Section 2.

Note 16 The use of hyperarguments provides some flexibility in maintaining their components. For
instance, when CL is the underlying logic, the following rule allows to split a hyperargument component
into two new components:

〈S1, ψ1 | . . . | S1i ∪ S2i , ψ1
i ∨ ψ2

i | . . . | Sn, ψn〉
〈S1, ψ1 | . . . | S1i , ψ1

i | S2i , ψ2
i | . . . | Sn, ψn〉

Example 17 Consider again the argumentation framework AF(S1) from Example 1, now in a hy-
perargument setting, where S1 = {r, p, q,¬p∨¬q}, classical logic is the base logic, and H-Undercut is
the sole attack rule. In addition to the arguments A0 − A8 in the setting of Example 1, we now get,
by the splitting rule of Note 16, hyperarguments such as the following:

H9 = 〈¬p ∨ ¬q,¬p | q,¬p〉, H10 = 〈¬p ∨ ¬q,¬q | p,¬q〉, H11 = 〈p, p ∧ q | q, p ∧ q〉.

See Figure 6 for the extension of the graph in Figure 2 (the dashed graph) with the additional
hyperarguments and attacks (the solid parts of the graph).

Recall that as indicated in Note 2, AF(S1) has inconsistent extensions. This problem may be
avoided by using a hyperargument-based framework as in the current example. Indeed, in the present
setting, the following three sets of hyperarguments are parts of different complete extensions: E1 =
{A>, A0, A1, A2, A4, A5, A6, H11}, E2 = {A>, A0, A2, A3, A5, A7, H9} and E3 = {A>, A0, A1, A3, A4,
A8, H10} (see Figure 6). Now, the ‘problematic set’ E4 = {A>, A0, A1, A2, A3, A4, A5} discussed in
Note 2 is no longer a complete extension, since, for instance, A1 is attacked by H9. In order to
defend A1, E4 must be extended with a hyperargument like A6, A8, or H10, and so the new set of
arguments is not conflict-free anymore. In Section 7 we show that the consistency of extensions of
hyperargument-based frameworks, like the ones of this example, is guaranteed.

22

A0 A⊥

A>

A1A4

A2A5

A7 A3

A7

A8

H9 H11 H10

Figure 6: Part of the hyperargument framework for S1 = {p, q,¬p ∨ ¬q, r}, based on classical logic
and the attack rule H-Undercut (Example 17). The dashed graph is the same as the one in Figure 2,
the solid nodes and arrows become available when generalizing to the hyperargument-based setting.

Argumentation frameworks that are based on hyperarguments are considered in detail in [33] (see
also [31] and [32]). Apart of the benefits mentioned in the last example (see also Proposition 6 below),
these frameworks are particularly useful for logics, such as the intermediate Gödel-Dummett logic
LC and the modal logic S5, that lack ‘good’ (i.e., cut-free) proof systems for producing ordinary
arguments. The correspondence to MCS-based reasoning of entailments induced by hyperargument-
based frameworks for such logics is shown next.

Theorem 7 [33] Let AFL,A(S) be a hyperargument-based argumentation framework for S, based on a
logic L ∈ {CL, LC,S5} and the attack rules A = {H-ConUcut}∪A′, where ∅ 6= A′ ⊆ {H-Def,H-Ucut}.
Then:

1. S |∼Grd ψ iff S |∼∩Prf ψ iff S |∼∩Stb ψ iff S |∼∩mcs ψ.

2. S |∼∪Prf ψ iff S |∼∪Stb ψ iff S |∼∪mcs ψ.

Note 17 In [33] the theorem above is shown for a larger family of base logics (and a slightly different
definition of hyperarguments). We refer to [33] for further details.

6.2 g-Coherence

The second generalization to the settings of the previous sections is related to the notion of consistency.
Here we trade it by the weaker notion of coherence (with respect to what we call below reversing
functions). Accordingly, the set MCS(S) of the maximally consistent subsets of S is replaced by the
set MAXg(S) of the maximally g-coherent subsets of S, where g is a function that allows to ‘reverse’
the roles of some premises and conclusions with respect to the consequence relation of the base logic.
This is formalized below.23

23The material in this section is taken from [9].

23

Definition 25 (reversing function) Let ρ(L) be the set of the finite sets of the formulas in L. A
function g : ρ(L)→ L is called `CL-reversing , if for every finite sets Γ,∆,S1,S2 of L-formulas it holds
that Γ,S1 `CL g(S2 ∪∆) iff Γ,S2 `CL g(S1 ∪∆).

Intuitively, `CL-reversibility means that it is possible to ”reverse” the roles of S1 and S2 in the two
sides of `CL.

Definition 26 (g-coherence) Let g : ρ(L)→ L.

• S1,S2 ∈ ρ(L) are g-reversible (with respect to `CL), if S1 `CL g(S2) or S2 `CL g(S1).

• S1,S2 ∈ ρ(L) are g-coherent (with respect to `CL), if there are no subsets S ′1 and S ′2 of S1 and
S2 that are g-reversible.

• S ∈ ρ(L) is g-coherent (with respect to `CL), if every S1,S2 ⊆ S are g-coherent.

• A g-coherent set S is maximal , if none of its proper supersets is g-coherent. We denote by
MAXg(S) the set of the maximally g-coherent subsets of S.

Example 18 Here are some examples of `CL-reversing functions:

1. For S ∈ ρ(L), let g(S) = ¬
∧
S. Then g is `CL-reversing. It holds that S1 ∈ ρ(L) and S2 ∈ ρ(L)

are g-coherent iff S1 ∪ S2 is consistent, and S ∈ ρ(L) is g–coherent iff it is consistent. In this
case, then, for a set S of formulas in L, we have that MAXg(S) = MCS(S).

2. For S ∈ ρ(L), let g(S) =
∧
S ⊃ φ, where φ is a fixed formula. Intuitively, φ may represent a state

of affairs that the reasoner wants to avoid. Again, g is `CL-reversing, and this time S1,S2 ∈ ρ(L)
are g-coherent if their conjunction

∧
(S1∪S2) does not imply φ. Hence, the elements in MAXg(S)

are the ⊆-maximally consistent subsets of S that do not imply φ.

Note that in case that a propositional constant F for representing falsity is available in L, the
function in this item generalizes the function in the previous item, since the previous function
is obtained when φ = F.24

Reasoning with maximally g-coherent sets is now defined as in Definition 7.

Definition 27 (|∼CL
∩MAXg, |∼

CL
∪MAXg) Let g be a `CL-reversing function and let S a set of formulas.

• S |∼CL
∩MAXg ψ iff ψ ∈ CnCL(

⋂
MAXg(S)).

• S |∼CL
∪MAXg ψ iff ψ ∈

⋃
T ∈MAXg(S) CnCL(T).

To show that the entailments of the last definition correspond to the entailments induced by logical
argumentation frameworks, we need an attack relation that reflects g-reversibility.

Definition 28 (g-Undercut) Let g be `CL-reversing. For S ′2 6= ∅ we define:

g-Undercut (gUcut): 〈S1, ψ1〉 attacks 〈S2 ∪ S ′2, ψ2〉 iff `CL ψ1 ↔ g(S ′2).

The following theorem shows the correspondence between the entailment relations of Definition 27
and those that are induced by the corresponding argumentation framework.

24Indeed, in CL the formulas ¬
∧

Γ can equivalently be expressed by
∧

Γ ⊃ F, thus the g-function of the previous item
is the same as the function g(Γ) =

∧
Γ ⊃ F.

24

Theorem 8 Let g be a `CL-reversing function and let AFCL,{gUcut}(S) be an argumentation framework

for S, based on classical logic and the attack rule gUcut. Let |∼CL,{gUcut}
Grd , |∼CL,{gUcut}

∩Prf , |∼CL,{gUcut}
∩Stb ,

|∼CL,{gUcut}
∪Prf and |∼CL,{gUcut}

∪Stb be the entailments induced by AFCL,{gUcut}(S) (see Definition 6). Then:

1. S |∼CL,{gUcut}
Grd ψ iff S |∼CL,{gUcut}

∩Prf ψ iff S |∼CL,{gUcut}
∩Stb ψ iff S|∼CL

∩MAXgψ.

2. S |∼CL,{gUcut}
∪Prf ψ iff S |∼CL,{gUcut}

∪Stb ψ iff S |∼CL
∪MAXg ψ.

Note 18 g-coherence is defined here with respect to classical logic. However, extending this notion
to other logics is also possible. In fact, one of the main motivations of introducing g-coherence in [9]
is to allow a weaker notion of consistency for logics like LP [15, 65, 66] (recall Note 9). This involves
some extensions of the basic definitions. We refer to Section 7 of [9] for the details.

7 A Postulate-Based Analysis

In this section we consider the settings of the previous sections from a postulate-oriented point of
view. First, we concentrate on the attack relations and then check the frameworks and their semantic
extensions.

7.1 Postulates Concerning the Attack Relations

The results in the previous sections mainly answer the question whether some specific attack relations
(in a context of some base logic) are able to represent reasoning with maximally consistent subsets.
There is, however, a line of work that asks the reverse question: what are the conditions on the
attack relations that guarantee the correspondence between argumentation-based entailment relations
and reasoning with maximal consistent subsets. The gist of this research has been done for classical
argumentation frameworks (see the paragraph below Definition 4). In this section, we summarize the
main results of this research.25

We start by recalling the conditions on attack relations studied by [3, 73].

Definition 29 (properties of attack relations) Let AF(S) = 〈Arg(S),Attack〉 be a classical ar-
gumentation framework for S. Then Attack is said to be:

• Conflict-dependent (with respect to AF(S)), iff for every (〈S1, ψ1〉, 〈S2, ψ2〉) ∈ Attack it holds
that S1 ∪ S2 ` F.

• Conflict-sensitive (with respect to AF(S)), iff for every 〈S1, ψ1〉, 〈S2, ψ2〉 ∈ Arg(S), if S1∪S2 ` F
then (〈S1, ψ1〉, 〈S2, ψ2〉) ∈ Attack .

• Valid (with respect to AF(S)), iff for every E ⊆ Arg(S), if E is conflict-free then Sup(E) is
consistent.

• Conflict-complete (with respect to AF(S)), iff for every minimally inconsistent set T ⊆ S, for
every T1 ∪ T2 ⊆ T such that T1 6= ∅, T2 6= ∅ and T1 ∪ T2 = T , and for every 〈T1, ψ1〉 ∈ Arg(S),
there is an argument 〈T2, ψ2〉 ∈ Arg(S) such that 〈T2, ψ2〉 attacks 〈T1, ψ1〉.

• Symmetric (with respect to AF(S)), iff when (〈S1, ψ1〉, 〈S2, ψ2〉) ∈ Attack , we also have that
(〈S2, ψ2〉, 〈S1, ψ1〉) ∈ Attack .

25Unless otherwise stated, the results in this section (7.1) are taken from [73].

25

Note 19 In [73] it is shown that there is no classical argumentation frameworkAF(S) = 〈Arg(S),Attack〉
for which Attack is both valid and conflict-dependent with respect to AF(S).26

So far we have concentrated on the question whether an argumentative entailment relation coincides
with entailments for reasoning with maximal consistency. In [73], the satisfaction of the following,
stronger condition is investigated:

MCSCL(S) = {Sup(E) | E ∈ Sem(AF(S))} . (3)

The next result shows that any classical argumentation framework that is based on some conflict-
free semantics, and in which Condition (3) is satisfied, will have a conflict-dependent attack relation.

Proposition 1 Let AF(S) = 〈Arg(S),Attack〉 be a classical argumentation framework and let Sem be
a semantics such that every E ∈ Sem(AF(S)) is conflict-free.27 If Condition (3) is met, then Attack
is conflict-dependent.

It follows that when looking for an attack relation that satisfies Condition (3), we can restrict our
attention to conflict-dependent attack relations.

By the last proposition and Note 19, we get:

Corollary 2 If AF(S) = 〈Arg(S),Attack〉 is a classical argumentation framework and Sem is a
semantics consisting only of conflict-free extensions, then if Attack is valid with respect to AF(S),
Condition (3) is not satisfied.

The next propositions show that besides valid attack relations, also symmetric and conflict-
complete attack relations do not necessarily give rise to a correspondence between extensions and
maximally consistent subsets.

Proposition 2 Let Sem ∈ {Cmp,Prf,Stb}. There is a classical framework AF(S) = 〈Arg(S),Attack〉
with respect to which Attack is symmetric, and in which Condition (3) is not satisfied.

Proposition 3 Let Sem ∈ {Cmp,Prf,Stb}. There is a classical framework AF(S) = 〈Arg(S),Attack〉
with respect to which Attack is conflict-complete, and in which Condition (3) is not satisfied.

Based on the propositions above and using the results in [3, 73], Table 3 summarizes, for classical
frameworks and a given attack relation R, what properties from Definition 29 are satisfied (in case
that Attack = {R}), and for a given semantics Sem ∈ {Prf,Stb}, whether Condition (3) holds (X) or
not (×).

Some notes are in order here:

• ConUcut does not appear in Table 3 since it is not applicable in classical frameworks.

• The correspondence to
⋂
MCSCL(S) (as investigated in Theorem 1) and logical frameworks that

are not classical are not considered in [2, 3, 73]. A postulate-based study of these cases is
therefore a topic yet to be studied.

26This, in turn, shows that the conditions of some of the results in [2, 3], regarding the links between reasoning with
maximal consistent subsets and argumentation-based inferences, are in fact vacuous.

27All the semantics in Definition 5 satisfy this condition.

26

Attack rule
conflict- conflict-

validity
conflict-

symmetry
Eq. (3) Eq. (3)

dependence sensitivity completeness w.r.t. Prf w.r.t. Stb

Def X × × X × × ×

DirDef X × × × × X X

Ucut X × × X × × ×

DirUcut X × × × × X X

Reb X × × × X × ×

DefReb X × × × X × ×

Reb + DirUcut X × × × × × ×

BigArgAt X × × × × X X

Table 3: The satisfaction of the properties from Definition 29 for classical frameworks, different attack
rules and the satisfaction of Condition (3) with respect to Sem ∈ {Prf,Stb}.

• As Table 3 indicates, validity and conflict-sensitivity are rather strict postulates (at least as
far as single attack rules are concerned). However, one may think of more liberal versions of
these postulates that are satisfied by some attack rules. For instance, each one of the rules Def,
DirDef, Ucut and DirUcut, satisfies a weaker version of validity (with a stronger condition),
where the conflict-freeness of E is traded by its completeness (in which case we get the support
consistency postulate of [10]).

• It is important to note that Condition (3) provides a useful indication to the suitability of the
underlying framework for reasoning with maximal consistency, but it is not a necessary condition
for the latter. Indeed, Example 2 provides an example in which Condition (3) is violated, yet –
as e.g. Theorem 1 shows – the underlying framework is capable of representing reasoning with
the maximally consistent subsets of the premises.

7.2 Postulates Concerning the Frameworks and Their Extensions

We now turn to rationality postulates concerning the frameworks described in some of the previous
sections.28 In what follows we shall refer to the postulates proposed by Caminada and Amgoud
in [1, 35]. First, we need the following terminology:

Definition 30 (Free(S)) Let L = 〈L,`〉 be a propositional logic and S a set of L-formulas.

• We say that S is `-consistent if there is no finite T ⊆ S such that ` ¬
∧
T . 29

• A subset T ⊆ S is an L-minimal conflict of S, if it is not `-consistent, but T \{ψ} is `-consistent
for every ψ ∈ T .

• We denote by Free(S) the set of formulas that are not part of any minimal conflict of S.

28For frameworks that are not mentioned in this section the satisfiability of the postulates is an open question.
29To keep the terminology of [1] and [35], we use in this section a different notion for `-consistency than the one

used previously in this paper (namely, that S 6` F). Note, nevertheless, that for explosive logics (i.e., in which for every
L-formulas ψ, φ it holds that ψ,¬ψ ` φ) these two notions coincide.

27

Definition 31 (rationality postulates) Let AFL,A(S) = 〈ArgL(S),Attack〉 be a logical argumen-
tation framework, E ∈ Sem(AFL,A(S)), and A,B ∈ ArgL(S). Consider the following postulates:30

• Closure of extensions (with respect to Sem): Conc(E) = CnL(Conc(E)).

• Closure under sub-arguments (with respect to Sem): if A ∈ E and Sup(B) ⊆ Sup(A) then B ∈ E .

• Consistency (with respect to Sem): Conc(E) is consistent.

• Exhaustiveness (with respect to Sem): if Sup(A) ∪ {Conc(A)} ⊆ Conc(E) then A ∈ E .

• Weak exhaustiveness (with respect to Sem): if Sup(A) ⊆ Sup(E) then A ∈ E .

• Free precedence (with respect to Sem): ArgL(Free(S)) ⊆ E .

The following follows from what is shown in [8]:

Proposition 4 Let AFL,A(S) be a logical argumentation framework, based on a contrapositive propo-
sitional logic L and where DirUcut is the attack rule, and let Sem ∈ {Cmp,Prf,Stb}. Then closure
of extensions, closure under sub-arguments, consistency, and weak exhaustiveness are satisfied with
respect to Sem. When ConUcut is also an attack rule, free precedence is satisfied as well with respect
to Sem.

In case of priorities among arguments, closure under sub-arguments is weakened to the following
postulate, stated for Sem-extensions and with respect to a preference order ≤ among arguments:

• Weak closure under sub-arguments: if A ∈ E , Sup(B) ⊆ Sup(A), and B ≤ A, then B ∈ E .

Proposition 5 Let AF≤πL,A(S) be a prioritized argumentation framework, based on a contrapositive
propositional logic L, and where DirUcut is the attack rule. Suppose also that the preferential order �π
and its strict counterpart ≺π (from which ≤π is obtained by Condition (1) in Section 4) are reflexive,
transitive, and left monotonic. Then closure of extensions, weak closure under sub-arguments, consis-
tency, and weak exhaustiveness are satisfied with respect to any Sem ∈ {Cmp,Prf,Stb}. When ConUcut
is also an attack rule, free precedence is satisfied as well with respect to any Sem ∈ {Cmp,Prf,Stb}.

Note 20 The following remarks and examples indicate that the conditions specified in Propositions 4
and 5 are indeed necessary:

1. When Ucut is the attack rule (instead of DirUcut), consistency is not necessarily satisfied.
Indeed, the extension E4 in Example 2 is not consistent.31

2. Even though weak exhaustiveness is satisfied by the frameworks considered in Proposition 4
and 5, exhaustiveness is not always satisfied by the frameworks considered in these propositions:

Example 19 ([8]) Let S ′ = {p∧ q, q, s,¬s, t∧ (¬s∨¬q),¬t} with π(p∧ q) = 1, π(s) = π(¬s) =
π(t ∧ (¬s ∨ ¬q) = π(¬t) = 2 and π(q) = 3, and let ≤π be any order of those in Items 1,
4, 5 or 6 of Example 7. Consider A1 = 〈s, t ∧ (¬s ∨ ¬q)},¬q〉 and A2 = 〈q, q〉. Note that
E = {〈p ∧ q, φ〉 | {p ∧ q} ` φ} ∪ {〈∅, φ〉 | ∅ ` φ} is a complete extension when DirUcut is
the attack rule. In this case it can be shown that A2 6∈ E , since A1 attacks A2 and A2 is
unattacked by E . Moreover, it can be easily checked that E does not defend any argument in
ArgCL,{DirUcut}(S ′) \ E . This means that this argumentation framework violates exhaustiveness,
since there is an argument with conclusion q in E (namely 〈p ∧ q, q〉), yet A2 = 〈q, q〉 6∈ E .

30We refer to [1, 35] for a discussion and justifications of these postulates.
31See Example 17 in Section 6.1 for a discussion how the above problem is solved with hyperarguments. In [50,

Proposition 3.18], it is shown how this example can be solved in the context of assumption-based argumentation as well.

28

3. When ConUcut is among the attack rules, sub-argument closure for complete extensions can be
violated:

Example 20 ([8]) Let S ′′ = {p ∧ q, s, r, r ⊃ (¬p ∧ ¬s)} and π(p ∧ q) = 1, π(r) = π(r ⊃
(¬p ∧ ¬s)) = 2 and π(s) = 3 where ≤π is defined as in Example 7, Item 1. Consider the
following arguments: A1 = 〈s, s〉, A2 = 〈{p ∧ q, s}, s〉, A3 = 〈{p ∧ q, r, r ⊃ (¬p ∧ ¬s),¬s〉, and
A4 = 〈∅,¬((p ∧ q) ∧ r ∧ (r ⊃ (¬p ∧ ¬s))〉. Note that there is a complete extension containing
A2 yet not containing A1, since A2 has only one attacker, A3, which is ConUcut-attacked by
A4 and thus cannot be defended. This amounts to a violation of sub-argument closure, since
Sup(A1) ⊂ Sup(A2).

Similar results to those of Propositions 4 and 5 are shown in [33] for frameworks that are based on
hyperarguments. Here we recall one of them, concerning classical logic CL and intermediate Gödel-
Dummett logic LC.

Proposition 6 Let AFL,A(S) be a hyperargument-based argumentation framework for S, based on a
logic L ∈ {CL, LC} and the attack rules A = {H-ConUcut} ∪ A′, where ∅ 6= A′ ⊆ {H-Def,H-Ucut}.
Then closure of extensions, closure under sub-arguments, consistency, free precedence and exhaustive-
ness are satisfied with respect to any Sem ∈ {Cmp,Prf,Stb}.

8 Proof Systems

Reasoning with (maximally) consistent subsets is computationally demanding, as already detection
of [in]consistency in classical logic is a [co]NP-complete problem. Moreover, the number of maximally
inconsistent subsets of a premise set S may grow exponentially in the size of S, and as shown in [70],
computing the size of MCS(S) is beyond the second level of the polynomial hierarchy. This calls upon
finding effective methods for reasoning with MCSs. In this section we briefly present such a method,
based on what is known as dynamic proof systems (or, dynamic derivations), introduced in [11, 13].
For a more detailed description of dynamic proof systems and their properties (together with some
further examples), we refer to [13, 14].

Our approach is a proof-theoretical one, using inference rules in Gentzen-style sequent calculi [47]
for constructing arguments from simpler arguments, and elimination rules for renouncing arguments.
Sequent calculi are particularly useful in our case, since an argument 〈S, ψ〉 may be viewed as a
sequent S ⇒ ψ (see, e.g. [12]). For instance, Table 4 presents a reformulation of Gentzen’s well-known
proof system LK for classical logic in terms of our representation of arguments. Note that here the
conclusion of an argument may be a set of formulas (and not only a single formula), and that 〈S, T 〉
is provable in LK32 for finite sets S and T iff 〈

∧
S,

∨
T 〉 is a CL-argument in the sense of Definition 2.

In what follows we shall assume that the proof systems that we are using are sound and complete
for the underlying logic, that is, given a logic L = 〈L,`〉 and a proof system C for it, we have that
S ` ψ iff 〈S, ψ〉 is provable in C.

Now, (simple) dynamic derivations are sequences of applications of inference rules like those in
Table 4 (for producing arguments), and attack rules like those in Table 1 (for renouncing, or dis-
charging arguments). Such derivations may be viewed as representing debates, in which arguments
are introduced or eliminated in the presence of counter-arguments. For defining dynamic proof sys-
tems we therefore need a proof setting S = 〈L,C,A〉 consisting of a logic L, a corresponding sound

32That is, there is a sequence of expressions of the form 〈Si, Ti〉 i = 1, . . . , n such that 〈Sn, Tn〉 = 〈S, T 〉, and each
expression is either an LK-axiom, or is obtained from previous expressions in the sequence by an application of an
LK-rule.

29

Rule Name Acronym Rule’s conditions Rule’s conclusion

Axiom 〈ψ,ψ〉

Weakening 〈S, T 〉 〈S ∪ S ′, T ∪ T ′〉

Cut 〈S1, T1 ∪ {ψ}〉 , 〈S2 ∪ {ψ}, T2〉 〈S1 ∪ S2, T1 ∪ T2〉

Left-∧ [∧L] 〈S ∪ {ψ} ∪ {φ}, T 〉 〈S ∪ {ψ ∧ φ}, T 〉

Right-∧ [∧R] 〈S, T ∪ {ψ}〉 , 〈S, T ∪ {φ}〉 〈S, T ∪ {ψ ∧ φ}〉

Left-∨ [∨L] 〈S ∪ {ψ}, T 〉 , 〈S ∪ {φ}, T 〉 〈S ∪ {ψ ∨ φ}, T 〉

Right-∨ [∨R] 〈S, T ∪ {ψ} ∪ {φ}〉 〈S, T ∪ {ψ ∨ φ}〉

Left-⊃ [⊃L] 〈S, T ∪ {ψ}〉 , 〈S ∪ {φ}, T 〉 〈S ∪ {ψ ⊃ φ}, T 〉

Right-⊃ [⊃R] 〈S ∪ {ψ}, T ∪ {φ}〉 〈S, T ∪ {ψ ⊃ φ}〉

Left-¬ [¬L] 〈S, T ∪ {ψ}〉 〈S ∪ {¬ψ}, T 〉

Right-¬ [¬R] 〈S ∪ {ψ}, T 〉 〈S, T ∪ {¬ψ}〉

Table 4: Arguments construction rules according to LK.

and complete proof calculus C for producing L-arguments, and a set A of attack rules for renounc-
ing (undefended) attacked arguments. An argument 〈S, ψ〉 that is renounced (i.e., is attacked by an
application of a rule in A) will be denoted in what follows by 〈S, ψ〉.

Given a setting S and a set S of L-formulas, an S-based simple dynamic derivation D for S is a
finite sequence consisting of three kinds of subsequences:

1. derivations of S-based arguments (i.e., elements in ArgL(S)),

2. derivations of expressions of the form 〈T1, T2〉,

3. eliminations of S-based arguments.

Items 1 and 2 above are produced by the inference rules in C, and Item 3 is produced by the attack
rules in A. In an S-based dynamic derivation, an argument in ArgL(S) can be renounced only if it
is attacked by another argument in ArgL(S). Items 1 and 3 are the ‘heart’ of the derivation; The
purpose of Item 2 is to provide derivations of the arguments in Item 1, or to produce the conditions
that are required for applying the attack rules in Item 3 (see the rightmost column in Table 1).33

Example 21 Consider the proof setting S = 〈CL, LK, {Ucut}〉 and the set of formulas S6 = {p,¬p, q}.
A simple S-derivation for S6 may look as follows (for simplicity, we omit the set notations {·} whenever
possible and add numbers to refer to the elements in the derivation according to their order).

1: 〈p, p〉 (Axiom), 2: 〈¬p,¬p〉 (Axiom), · · · , k: 〈∅, p↔¬¬p〉, k+1: 〈¬p,¬p〉 (Ucut of 1 on 2 by k)

The first two elements in the derivations are S6-based arguments (allowing to conclude p and ¬p,
respectively). The k’th element in the sequence indicates that p↔¬¬p is a tautology (follows from
an empty support set), and since LK is sound and complete for CL, this implies that `CL p↔¬¬p.

33Note, in particular, that the expressions derived in Item 2 are not necessarily S-based arguments, as in Item 1.

30

Thus, the condition for the Ucut-attack of 〈p, p〉 (Argument 1 in the derivation) on 〈¬p,¬p〉 (Argu-
ment 2) is met (see Table 1), and so this attack can be applied on step k+1 of the derivation, which
causes the renouncing of 〈¬p,¬p〉. Note that the sequence above may be extended by a derivation of
〈∅,¬p↔¬p〉, which provides the condition for a counter Ucut-attack of 〈¬p,¬p〉 on 〈p, p〉, and as a
result a renouncing of the latter.

The last example shows that the status of an argument may be changed as a derivation progresses:
a derived argument may be renounced later on, and if an attacker A1 of a renounced argument A2

is itself attacked (and so A1 is renounced), the attack on A2 may become obsolete, in which case A2

should be validated again. These considerations are captured by the evaluation process of Figure 7.

Input: a simple derivation D.

Let Attack := Elim := Derived := ∅;
Given a simple derivation D, while (D is not empty) do {

if the last element in D is a derived argument A, then

add A to the set Derived;

if the last element in D is an attack of A1 6∈ Elim on A2, then

add A1 to Attack and A2 to Elim;

remove the last element from D }
Let Accept := Derived− Elim;

Output: Attack, Elim, Accept.

Figure 7: Evaluation of a simple derivation.

Given a simple derivation D, the iterative top-down algorithm in Figure 7 computes the following
three sets: Elim(D) – the renounced (eliminated) arguments whose attacker is not already elimi-
nated, Attack(D) – the arguments that attack an argument in Elim(D), and Accept(D) – the derived
arguments in D that are not in Elim(D).

Definition 32 ((strongly) coherent derivation) A simple derivation D is coherent , if there is
no argument that eliminates another argument, and later is eliminated itself, that is: Attack(D) ∩
Elim(D) = ∅. We say that D is strongly coherent , if Sup(Attack(D)) =

⋃
A∈Attack(D) Sup(A) is consis-

tent.34

Example 22 Consider the simple derivation D of Example 21. We have: Accept = Attack = {〈p, p〉}
and Elim = {〈¬p,¬p〉}. In particular, D is both coherent and strongly coherent.

Now we can define what dynamic derivations are.

Definition 33 (dynamic derivation) Let S = 〈L,C,A〉 be a proof setting and let S be a set of
formulas in L. A (dynamic) S-derivation for S is a simple derivation D of one of the following forms:

a) D is a singleton consisting of an axiom of C.

b) D is an extension of a dynamic derivation by a derivation in C, where all the derived arguments
are not in Elim(D).

34As shown in [9], in the proof setting S = 〈CL, LK, {Ucut}〉, strong coherence implies coherence (but not vice-versa).

31

c) D is an extension of a dynamic derivation by a sequence of renounced arguments, the attackers
of which are in ArgL(S) and are not attacked by arguments in Accept(D) ∩ ArgL(S), and the
attacks are based on conditions that are proved in D.35

One may think of a dynamic derivation as a proof that progresses over derivation steps. At each
step the current derivation is extended by a ‘block’ of introduced arguments or renounced arguments.
As a result, the statuses of the arguments in the derivation are updated accordingly. In particular, a
derived argument may be renounced in light of new derived arguments, but also the other way around
is possible: a renounced argument may be ‘restored’ if its attacking argument is counter-attacked. It
follows that previously derived data may not be derived anymore (and vice-versa) until and unless
new derived information revises the state of affairs.

The next definition, of the outcomes of a dynamic derivation, indicates when it is ‘safe’ to conclude
that a derived argument must hold under any circumstances.

Definition 34 (final derivability) Let S=〈L,C,A〉 be a proof setting and S a set of L-formulas.

• A formula ψ is finally derived (or safely derived) in a dynamic S-derivation D for S, if there is
an argument A ∈ ArgL(S) ∩ Accept(D) such that ψ = Conc(A), and for every extension D′ of
D, still A ∈ Accept(D′).

• A formula ψ is sparsely finally derived in a dynamic S-derivation D for S, if there is an argument
A ∈ ArgL(S) ∩ Accept(D) such that ψ = Conc(A), and for every extension D′ of D there is an
argument A′ ∈ ArgL(S) ∩ Accept(D′) such that ψ = Conc(A′).

Example 23 Consider again the proof setting S = 〈CL, LK, {Ucut}〉 and the set of formulas S6 =
{p,¬p, q}. The following S-derivation for S6 is obviously (strongly) coherent (since nothing is re-
nounced in it):

1: 〈q, q〉, · · · , i: 〈∅, p∨¬p〉, · · · , j: 〈∅, (p∨¬p)↔ ¬(p∧¬p)〉

Moreover, q is finally derived (and so also sparsely finally derived) in this derivation. Indeed, the
only arguments in ArgCL(S6) that can potentially Ucut-attack 〈q, q〉 are of the form 〈{p,¬p}, ψ〉 or
〈{p,¬p, q}, ψ〉, where ψ is logically equivalent to ¬q. However, such arguments are counter-attacked
by the argument 〈∅, p∨¬p〉, obtained in step i of the derivation above, based on the attack condition
in step j of the same derivation. It follows, by the conditions in Item (c) of Definition 33, that no
renounced tuple in which 〈q, q〉 is attacked can be derived in any extension of the derivation above,
thus q is finally derived in this derivation.

Example 24 To see the need for sparse final derivability, let again S = 〈CL, LK, {Ucut}〉 and con-
sider the set S2 = {p∧q,¬p∧q} from Example 4. Note that both A1 = 〈p ∧ q, q〉 and A2 = 〈¬p ∧ q, q〉
are LK-derivable in this case, but neither of them is finally derivable, since any S-derivation that
includes them can be extended with derivations of A3 = 〈¬p ∧ q,¬(p ∧ q)〉 and A4 = 〈p ∧ q,¬(¬p ∧ q)〉
that respectively Ucut-attack A1 and A2. Note, however, that these attacks cannot be applied simul-
taneously , since the attackers A3 and A4 counter-attack each other. It follows that in each extension
either A1 or A2 is accepted, and so q is sparsely finally derived from S2.

The entailment relations induced by the dynamic proof systems described above are defined next.

Definition 35 (|∼S
∩ , |∼S

e) Let S = 〈L,C,A〉 be a proof setting, S a set of L-formulas, and ψ an
L-formula.

35This condition assures that the attacks are ‘sound’: the attacking arguments are not counter-attacked by an
accepted S-based argument.

32

• S|∼S
∩ψ iff there is a coherent S-derivation D for S in which ψ is finally derived.

• S|∼S
eψ iff there is a strongly coherent S-derivation D for S in which ψ is sparsely finally derived.

Example 25 Let S=〈CL, LK, {Ucut}〉.

• By Examples 21 and 23 we have that {p,¬p, q} |∼S
∩ q and {p,¬p, q} |∼S

e q, while {p,¬p, q} 6|∼S
? p

and {p,¬p, q} 6|∼S
? ¬p for either ? ∈ {∩,e}.

• By Example 24 we have that {p∧q,¬p∧q}|∼S
e q (and it is easy to verify that {p∧q,¬p∧q} 6|∼S

e p

and {p ∧ q,¬p ∧ q} 6|∼S
e ¬p).

The next theorem, introduced in [9], shows that dynamic proofs are faithful for computing the
three patterns of reasoning with maximal consistency considered in Section 3.

Theorem 9 Let S=〈CL, LK, {Ucut}〉 and S′=〈CL, LK, {ConUcut, DefReb}〉 be two proof settings.
Then for every finite set S of formulas and formula ψ, it holds that:

• S |∼S
∩ψ iff S |∼CL

∩mcs ψ

• S |∼S
eψ iff S |∼CL

emcs ψ

• S |∼S′

∩ ψ iff S ||∼CL
mcs ψ

Example 26 The first item of Example 25 demonstrates the first two items of the last theorem for
S6 = {p,¬p, q} (Examples 21 and 23), as MCSCL(S6) = {{q}}. The second item of Example 25
exemplifies the second item of Theorem 9, where S2 (Examples 4 and 24) is the set of assertions.

For the extension to g-coherent subsets of premises considered in Section 6.2, the following is shown
in [9]:

Theorem 10 Let g be a `CL-reversing function and let Sg = 〈CL, LK, {gUcut}〉 be a proof settings.

Then for every finite set S of formulas and a formula ψ it holds that S |∼Sg
∩ ψ iff S |∼CL

∩Maxg ψ.

9 Summary and Conclusion

In this paper we have surveyed different settings for reasoning with maximal consistency in the context
of logical argumentation. This includes:

• Rescher and Manor’s basic MCS-based entailments [67] and their representations by argumen-
tation frameworks based on classical logic and Undercut,

• Rescher and Manor’s inevitable MCS-based entailments [67] and their representations by argu-
mentation frameworks based on classical logic and Direct Undercut,

• Benferhat, Dubois and Prade’s entailments based on consistent subsets [23, 24] and their rep-
resentations by argumentation frameworks based on classical logic together with Consistency
Undercut and Defeating Rebuttal,

• Prioritized MCS-based reasoning, like those considered by Amgoud, Cayrol [5], and Vesic [6],
for incorporating preference-based approaches like Brewka’s preferred subtheories [34], and
Konieczny, Marquis, and Vesic’s ranking methods [54], represented by prioritized argumenta-
tion frameworks based on contrapositive logics together with Direct Undercut and Consistency
Undercut,

33

• Reasoning with maximally consistent subsets of premises that include both strict and defeasible
assertions, represented by Bondarenko, Dung, Kowalski and Toni’s assumption-based argumen-
tation (ABA) frameworks [29], based on contrapositive logics, and whose contrariness operator
is defined by a negation connective,

• Reasoning with preferred subtheories over the most consistent subsets of the premises by D’Agostino
and Modgil’s dialectical argumentation frameworks [39, 40],

• Relations to the reasoning patterns depicted by the ASPIC+ system [59],

• Extensions to hyperarguments and the correspondence of the associated argumentation frame-
works to MCS-based reasoning,

• Reasoning with maximally g-coherent subsets of premise and their correspondence to entailment
relations that are induced by argumentation frameworks based on classical logic and g-Undercut.

The two disciplines for handling inconsistency in the various contexts considered above are to some
extent complementary: the MCS-based reasoning is defined in a simple and intuitively appealing way,
while logical argumentation provides a machinery for justifying the conclusions, including the presen-
tation of arguments that support the conclusions, and the construction of a partial argumentation
graph that contains the supporting arguments. From a knowledge representation point of view this is
therefore a useful combination.

Another benefit of providing different approaches to MCS-based reasoning is that from a computa-
tional perspective the latter may be quite demanding (as indicated in the first paragraph of Section 8).
Thus, proof-theoretic procedures like the dynamic derivations considered in Section 8 may serve as a
successful platform for reaching conclusions based on the data depicted by the maximally consistent
premise sets.

When it comes to first-order languages, MCS-based reasoning becomes even more computationally
demanding. In such cases, the provision of equivalent reasoning methods is crucial for applications
in which maximal consistency has a primary role. A natural step for further research is therefore an
investigation of the relations between MCS-based reasoning and logical argumentation in the context of
higher-order languages, implementations of systems for such cases, and verifications of their behavior
with respect to large datasets.

Acknowledgement

We thank Christian Straßer and the anonymous reviewers for many comments and helpful suggestions.
The work on this paper is supported by the Israel Science Foundation (Grant No.817/15). AnneMarie
Borg and Jesse Heyninck are also supported by the Alexander von Humboldt Foundation and the
German Ministry for Education and Research.

References

[1] L. Amgoud. Postulates for logic-based argumentation systems. International Journal of Approx-
imate Reasoning, 55(9):2028–2048, 2014.

[2] L. Amgoud and P. Besnard. Bridging the gap between abstract argumentation systems and logic.
In Proc. SUM’09, LNCS 5785, pages 12–27. Springer, 2009.

[3] L. Amgoud and P. Besnard. A formal analysis of logic-based argumentation systems. In Proc.
SUM’10, LNCS 6379, pages 42–55. Springer, 2010.

34

[4] L. Amgoud and P. Besnard. Logical limits of abstract argumentation frameworks. Journal of
Applied Non-Classical Logics, 23(3):229–267, 2013.

[5] L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation frame-
works. Journal of Automated Reasoning, (2):125–169, 2002.

[6] L. Amgoud and S. Vesic. Handling inconsistency with preference-based argumentation. In Proc.
SUM’10, pages 56–69. Springer, 2010.

[7] O. Arieli, A. Borg, and J. Heyninck. Structured argumentation and reasoning with maximal
consistency. 2019. Submitted.

[8] O. Arieli, A. Borg, and C. Straßer. Prioritized sequent-based argumentation. In Proc. AAMAS’18,
pages 1105–1113. ACM, 2018.

[9] O. Arieli, A. Borg, and C. Straßer. Reasoning with maximal consistency by argumentative
approaches. Journal of Logic and Computation, 28(7):1523–1563, 2018.

[10] O. Arieli, A. Borg, and C. Straßer. A proof theoretic perspective of logical argumentation, 2019.
submitted.

[11] O. Arieli and C. Straßer. Dynamic derivations for sequent-based logical argumentation. In Proc.
COMMA’14, volume 266 of Frontiers in Artificial Intelligence and Applications, pages 89–100.
IOS Press, 2014.

[12] O. Arieli and C. Straßer. Sequent-based logical argumentation. Journal of Argument and Com-
putation, 6(1):73–99, 2015.

[13] O. Arieli and C. Straßer. Deductive argumentation by enhanced sequent calculi and dynamic
derivations. Electronic Notes in Theoretical Computer Science, 323:21–37, 2016.

[14] O. Arieli and C. Straßer. Logical argumentation by dynamic proof systems. Theoretical Computer
Science, 2019. In press (doi: 10.1016/j.tcs.2019.02.019).

[15] F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic, 7:103–106, 1966.

[16] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics.
In Logic: Foundations to Applications, pages 1–32. Oxford Science Publications, 1996.

[17] C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE Transactions on
Knowledge and Data Engineering, 3(2):208–220, 1991.

[18] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

[19] P. Baroni, M. Caminada, and M. Giacomin. Abstract argumentation frameworks and their
semantics. In P. Baroni, D. Gabay, M. Giacomin, and L. van der Torre, editors, Handbook of
Formal Argumentation, pages 159–236. College Publications, 2018.

[20] P. Baroni and M. Giacomin. Semantics for abstract argumentation systems. In I. Rahwan and
G. R. Simary, editors, Argumentation in Artificial Intelligence, pages 25–44. 2009.

[21] M. Beirlaen, J. Heyninck, P. Pardo, and C. Straßer. Argument strength in formal argumentation.
Journal of Applied Logics-IfCoLog Journal of Logics and their Applications, 5(3):629–675, 2018.

35

[22] S. Benferhat, D. Dubois, and H. Prade. Representing default rules in possibilistic logic. In Proc.
KR’92, pages 673–684, 1992.

[23] S. Benferhat, D. Dubois, and H. Prade. A local approach to reasoning under incosistency in
stratified knowledge bases. In Proc. ECSQARU’95, LNCS 946, pages 36–43. Springer, 1995.

[24] S. Benferhat, D. Dubois, and H. Prade. Some syntactic approaches to the handling of inconsistent
knowledge bases: A comparative study part 1: The flat case. Studia Logica, 58(1):17–45, 1997.

[25] P. Besnard, A. Garćıa, A. Hunter, S. Modgil, H. Prakken, G. Simari, and F. Toni. Introduction
to structured argumentation. Argument & Computation, 5(1):1–4, 2014.

[26] P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Journal of Artificial
Intelligence, 128(1–2):203–235, 2001.

[27] P. Besnard and A. Hunter. Argumentation based on classical logic. In I. Rahwan and G. R.
Simary, editors, Argumentation in Artificial Intelligence, pages 133–152. Springer, 2009.

[28] P. Besnard and A. Hunter. A review of argumentation based on deductive arguments. In P. Baroni,
D. Gabay, M. Giacomin, and L. van der Torre, editors, Handbook of Formal Argumentation, pages
437–484. College Publications, 2018.

[29] A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Journal of Artificial Intelligence, 93(1):63–101, 1997.

[30] A. Borg. Equipping sequent-based argumentation with defeasible assumptions. In Proc.
COMMA’18, volume 305 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2018.

[31] A. Borg and O. Arieli. Hypersequential argumentation frameworks: an instantiation in the modal
logic S5. In Proc. AAMAS’18, pages 1097–1104. ACM, 2018.

[32] A. Borg, O. Arieli, and C. Straßer. Hypersequent-based argumentation: an instantiation in the
relevance logic RM. In E. Black, S. Modgil, and N. Oren, editors, Proc. TAFA’17, LNCS 10757,
pages 17–34. Springer, 2017.

[33] A. Borg, C. Straßer, and O. Arieli. A generalized proof-theoretic approach to structured argu-
mentation by hypersequent calculi. 2019. Submitted.

[34] G. Brewka. Preferred subtheories: An extended logical framework for default reasoning. In N. S.
Sridharan, editor, Proc. IJCAI’89, pages 1043–1048. Morgan Kaufmann, 1989.

[35] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Journal of
Artificial Intelligence, 171:286–310, 2007.

[36] M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. In Proc. COMMA’14,
pages 209–220. IOS Press, 2014.

[37] C. Cayrol. On the relation between argumentation and non-monotonic coherence-based entail-
ment. In Proc. IJCAI’95, pages 1443–1448. Morgan Kaufmann, 1995.

[38] K. Čyras and F. Toni. Non-monotonic inference properties for assumption-based argumentation.
In Proc. TAFA’15, pages 92–111. Springer, 2015.

[39] M. D’Agostino and S. Modgil. Classical logic, argumentation and dialectic. Artificial Intelligence,
262:15–51, 2018.

36

[40] M. D’Agostino and S. Modgil. A study of argumentative characterisations of preferred subtheo-
ries. In Proc. IJCAI’18, pages 1788–1794, 2018.

[41] J. Dauphin and M. Cramer. Aspic-end: Structured argumentation with explanations and natural
deduction. In Proc. TAFA’17, pages 51–66. Springer, 2017.

[42] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Journal of Artificial Intelligence, 77:321–357,
1995.

[43] P. M. Dung, R. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based, admis-
sible argumentation. Journal of Artificial Intelligence, 170(2):114–159, 2006.

[44] M. Elvang-Gøransson, P. Krause, and J. Fox. Acceptability of arguments as logical uncertainty.
In Proc. ECSQARU’93, pages 85–90. Springer, 1993.

[45] A. Garćıa and G. Simari. Defeasible logic programming: an argumentative approach. Theory
and Practice of Logic Programming, 4(1–2):95–138, 2004.

[46] P. Gärdenfors and H. Rott. Belief revision. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 4, pages 35–132. Oxford University Press, 1995.

[47] G. Gentzen. Investigations into logical deduction, 1934. In German. An English translation
appears in ‘The Collected Works of Gerhard Gentzen’, edited by M. E. Szabo, North-Holland,
1969.

[48] N. Gorogiannis and A. Hunter. Instantiating abstract argumentation with classical logic argu-
ments: Postulates and properties. Journal of Artificial Intelligence, 175(9–10):1479–1497, 2011.

[49] J. Heyninck and O. Arieli. On the semantics of simple contrapositive assumption-based argu-
mentation frameworks. In Proc. COMMA’18, volume 305 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2018.

[50] J. Heyninck and O. Arieli. Simple contrapositive assumption-based frameworks. 2019. Accepted
to LPNMR’19 (extended abstract in AAMAS’19).

[51] J. Heyninck and C. Straßer. Relations between assumption-based approaches in nonmonotonic
logic and formal argumentation. In Proc. NMR’16, pages 65–76, 2016.

[52] J. Heyninck and C. Straßer. Revisiting unrestricted rebut and preferences in structured argu-
mentation. In Proc. IJCAI’17, pages 1088–1092. AAAI Press, 2017.

[53] S. Kaci, L. van der Torre, and S. Villata. Preference in abstract argumentation. In Proc.
COMMA’18, volume 305 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2018.

[54] S. Konieczny, P. Marquis, and S. Vesic. New inference relations from maximal consistent subsets.
In Proc. KR’18, pages 649–650. AAAI Press, 2018.

[55] S. Konieczny and R. Pino Pérez. Merging information under constraints: a logical framework.
Logic and Computation, 12(5):773–808, 2002.

[56] J. Lin. Integration of weighted knowledge bases. Journal of Artificial Intelligence, 83(2):363–378,
1996.

[57] R. Malouf. Maximal consistent subsets. Computational Linguistics, 33(2):153–160, 2007.

37

[58] S. Modgil and H. Prakken. A general account of argumentation with preferences. Journal of
Artificial Intelligence, 195:361–397, 2013.

[59] S. Modgil and H. Prakken. The ASPIC+ framework for structured argumentation: a tutorial.
Argument and Computation, 5(1):31–62, 2014.

[60] G. Pigozzi, A. Tsoukias, and P. Viappiani. Preferences in artificial intelligence. Annals of Math-
ematics and Artificial Intelligence, 77(3-4):361–401, 2016.

[61] J. Pollock. How to reason defeasibly. Journal of Artificial Intelligence, 57(1):1–42, 1992.

[62] H. Prakken. An abstract framework for argumentation with structured arguments. Argument
and Computation, 1(2):93–124, 2010.

[63] H. Prakken. Historical overview of formal argumentation. In P. Baroni, D. Gabay, M. Gia-
comin, and L. van der Torre, editors, Handbook of Formal Argumentation, pages 75–143. College
Publications, 2018.

[64] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosochical Logic 14, pages 219–318. Kluwer, 2002.

[65] G. Priest. Logic of paradox. Journal of Philosophical Logic, 8:219–241, 1979.

[66] G. Priest. Reasoning about truth. Journal of Artificial Intelligence, 39:231–244, 1989.

[67] N. Rescher and R. Manor. On inference from inconsistent premises. Theory and Decision, 1:179–
217, 1970.

[68] G. R Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its imple-
mentation. Journal of Artificial Intelligence, 53(2–3):125–157, 1992.

[69] C. Straßer and O. Arieli. Sequent-based argumentation for normative reasoning. In Proc.
DEON’14, LNCS 8554, pages 224–240. Springer, 2014. An extended version will appear in the
Journal of Logic and Computation (doi: 10.1093/logcom/exv050).

[70] M. Thimm and J. P. Wallner. Some complexity results on inconsistency measurement. In Proc.
KR’16, pages 114–124, 2016.

[71] F. Toni. Assumption-based argumentation for epistemic and practical reasoning. Computable
Models of the Law, Languages, Dialogues, Games, Ontologies, 4884:185–202, 2008.

[72] F. Toni. A tutorial on assumption-based argumentation. Argument and Computation, 5(1):89–
117, 2014.

[73] S. Vesic. Identifying the class of maxi-consistent operators in argumentation. Journal of Artificial
Intelligence Research, 47:71–93, 2013.

[74] S. Vesic and L. van der Torre. Beyond maxi-consistent argumentation operators. In Proc.
JELIA’12, LNCS 7519, pages 424–436. Springer, 2012.

38

