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Abstract

In this paper we integrate priorities in sequent-based argumentation. The former is a useful and ex-
tensively investigated tool in the context of non-monotonic reasoning, and the latter is a modular and
general way of handling logical argumentation. Their combination offers a platform for representing and
reasoning with maximally consistent subsets of prioritized knowledge bases. Moreover, many frame-
works of the resulting formalisms satisfy common rationality postulates and other desirable properties,
like conflict preservation.

1 Introduction
Logical (or structural) argumentation is a branch of argumentation theory in which arguments have a spe-
cific structure. Among others, it has been shown useful for reasoning about knowledge, beliefs, goals
and norms in agent and multi-agent systems (see, e.g., [18] for a survey and further references). In log-
ical argumentation, arguments are expressed in terms of formal languages and acceptance of arguments
is determined by logical entailments. A wealth of research has been conducted on formalizing this kind
of argumentation. This includes methods that are based on Tarskian logics, like Besnard and Hunter’s
approach [10], in which classical logic is the deductive base (the so-called core logic). This approach
was generalized to sequent-based argumentation [7], in which Gentzen’s sequents [15], extensively used in
proof theory, are incorporated for representing arguments, and attacks are formulated by special inference
rules called sequent elimination rules. The result is a generic and modular approach to logical argumen-
tation, in which any logic with a corresponding sound and complete sequent calculus can be used as the
underlying core logic.

An important feature of reasoning in many contexts, including of course multi-agent systems, is the
use of priorities, e.g. to model the agents’ preferences. For many existing argumentation frameworks
prioritized settings are already available, see, e.g. [2, 13, 19]. The main contribution of this paper is
that we extend some of those settings to arbitrary propositional languages and logics, where arguments
and the attacks among them are captured in a more moderated way. For this, we extend sequent-based
argumentation frameworks with a priority function on the well-formed formulas of the core logic. By
keeping the exact definition of the priority function unspecified, we are able to create a general sequent-
based framework that can handle different types of preferences, specified in different languages and for
various logics and purposes.

The adequacy of this prioritized version is shown by the validity, for particular attack rules, of common
rationality postulates [1, 12] and by the fact that in the obtained framework conflicts are tolerated: any
extension in the prioritized setting is conflict-free in the flat (i.e, the non-prioritized) case. Moreover, the
use of priorities allows us to extend to the preferential case some recent results (see [6, 8]) that sequent-
based argumentation frameworks provide a useful platform for representing and reasoning with maximally
consistent subsets of the premises [22].

The final publication is available at TODO
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The usefulness of our approach will be demonstrated (among others) on the following toy example (to
which we shall return in the conclusion of the paper), involving agents and preferences.

Example 1. [5, 17] An agent, representing a flat owner, negotiates the construction of a swimming pool
(s), a tennis-court (t) and a private car-park (p) with other agents, representing potential tenants. It is known
that any investment in two or more of these facilities will increase the rent (r), otherwise the rent will not be
changed. The tenants’ representatives do not have a particular preference among these options, but if they
have to make a choice, they prefer not to have two sport facilities (s and t) and definitely do not want to
increase the rent. Based on these inputs, that flat owner’s representative needs to reach a recommendation
about the facility (or facilities) to be constructed.

The remainder of the paper is organized as follows: the next section is a survey of the most important
notions of sequent-based argumentation, followed by a section in which the general setting for the pref-
erences is introduced. In Section 4 we consider some basic properties of the prioritized frameworks and
show their adequacy for defeasible reasoning. Then, in Section 5, we give some representation results in
terms of maximally consistent subsets of the premises. In Section 6 we consider some related approaches
and conclude.

2 Sequent-based argumentation
Throughout the paper we will consider propositional languages, denoted by L. Atomic formulas are de-
noted by p, q, formulas are denoted by γ, δ, φ, ψ, sets of formulas are denoted by S, T , and finite sets of
formulas are denoted by Γ,∆, all of which can be primed or indexed.

Definition 1. A logic for a language L is a pair L = 〈L,`〉, where ` is a (Tarskian) consequence relation
for L, having the following properties: reflexivity: if φ ∈ S , then S ` φ; transitivity: if S ` φ and
S ′, φ ` ψ, then S,S ′ ` ψ; and monotonicity: if S ′ ` φ and S ′ ⊆ S, then S ` φ.

We assume that the underlying language L contains the following connectives:

• a `-negation ¬: p 6` ¬p and ¬p 6` p, for every atom p,

• a `-conjunction ∧: S ` φ ∧ ψ iff S ` φ and S ` ψ.

Other connectives L may contain are the following:

• a `-disjunction ∨: S ` φ ∨ ψ iff S ` φ or S ` ψ,

• a `-implication ⊃: S, φ ` ψ iff S ` φ ⊃ ψ.

We shall abbreviate (φ ⊃ ψ) ∧ (ψ ⊃ φ) by φ↔ ψ, denote by
∧

Γ (respectively, by
∨

Γ), the conjunction
(respectively, the disjunction) of all the formulas in Γ, and let ¬S = {¬φ | φ ∈ S}.

As usual in logical argumentation (see, e.g., [10, 20, 21, 23]), arguments have a specific structure based
on the underlying formal language, the so-called core logic. In the current setting arguments are represented
by the well-known proof theoretical notion of a sequent.

Definition 2. Let L = 〈L,`〉 be a logic and S a set of L-formulas.

• An L-sequent (sequent for short) is an expression of the form Γ⇒ ∆, where Γ and ∆ are finite sets
of formulas in L and⇒ is a symbol that does not appear in L.

• An L-argument (argument for short) is an L-sequent Γ⇒ ψ,1 where Γ ` ψ. Γ is called the support
set of the argument and ψ its conclusion.

• An L-argument based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We denote by ArgL(S) the set
of all the L-arguments based on S.

1Set signs in arguments are omitted.
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Given an argument a = Γ⇒ ψ, we denote Sup(a) = Γ and Con(a) = ψ. We say that a′ is a sub-argument
of a iff Sup(a′) ⊆ Sup(a). The set of all the sub-arguments of a is denoted by Sub(a).

The formal systems used for the constructions of sequents (and so of arguments) for a logic L =
〈L,`〉, are sequent calculi [15], denoted here by C. In what follows we shall assume that C is sound and
complete for L = 〈L,`〉, i.e., Γ ⇒ ψ is provable in C iff Γ ` ψ. One of the advantages of sequent-based
argumentation is that any logic with a corresponding sound and complete sequent calculus can be used as
the core logic.2 The construction of arguments from simpler arguments is done by the inference rules of
the sequent calculus [15].

Argumentation systems contain also attacks between arguments. In our case, attacks are represented
by sequent elimination rules. Such a rule consists of an attacking argument (the first condition of the rule),
an attacked argument (the last condition of the rule), conditions for the attack (the conditions in between)
and a conclusion (the eliminated attacked sequent). The outcome of an application of such a rule is that the
attacked sequent is ‘eliminated’.3 The elimination of a sequent a = Γ⇒ ∆ is denoted by a or Γ 6⇒ ∆.

Definition 3. A sequent elimination rule (or attack rule) is a ruleR of the form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γn 6⇒ ∆n
R

Let Γ ⇒ ψ,Γ′ ⇒ ψ′ ∈ ArgL(S) and let R be an elimination rule. If Γ ⇒ ψ is an instance of Γ1 ⇒ ∆1,
Γ′ ⇒ ψ′ is an instance of Γn ⇒ ∆n and all the other conditions ofR are provable in C, we say that Γ⇒ ψ
R-attacks Γ′ ⇒ ψ′.

Example 2. We refer to [7, 24] for a definition of many sequent elimination rules. Below are three of them
(assuming that Γ2 6= ∅):

Undercut (Ucut):

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬
∧

Γ2 Γ2,Γ
′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

Direct Ucut (DUcut):
Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬γ γ,Γ′

2 ⇒ ψ2

γ,Γ′
2 6⇒ ψ2

Consistency Ucut (ConUcut):

⇒ ¬
∧

Γ2 Γ2,Γ
′
2 ⇒ ψ

Γ2,Γ
′
2 6⇒ ψ

A sequent-based framework is now defined as follows:

Definition 4. A sequent-based argumentation framework for a set of formulas S based on a logic L =
〈L,`〉 and a set AR of sequent elimination rules, is a pair AFL,AR(S) = 〈ArgL(S),AT 〉, where AT ⊆
ArgL(S)× ArgL(S) and (a1, a2) ∈ AT iff there is anR ∈ AR such that a1 R-attacks a2.

In what follows, to simplify notation, we will omit the subscript L and/or AR, when this is known or
arbitrary.

Example 3. Let S = {p, q,¬p ∨ ¬q} and let AFL,{Ucut}(S) be a framework for S, induced by classical
logic CL, its corresponding sound and complete sequent calculus LK, and Ucut as the only attack rule.
Some of the arguments are:
a1 = p⇒ p a4 = p⇒ ¬((¬p ∨ ¬q) ∧ q)
a2 = q ⇒ q a5 = q ⇒ ¬((¬p ∨ ¬q) ∧ p)
a3 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q a6 = p, q ⇒ p ∧ q
a7 = ¬p ∨ ¬q, q ⇒ ¬p a8 = ¬p ∨ ¬q, p⇒ ¬q

See Figure 1 for a graphical representation of these arguments and the attacks between them.

Given a (sequent-based) framework, Dung-style semantics [14] can be applied to it to determine what
combinations of arguments (called extensions) can collectively be accepted from it.

2See [7] for further advantages of this approach.
3That is, the eliminated sequent should not be used as a condition of later applications of rules in the derivation, nor is it considered

a valid conclusion of the derivation.

3



a1a4

a2a5

a6 a3

a7

a8

Figure 1: Part of the sequent-based argumentation graph for S = {p, q,¬p ∨ ¬q} from Example 3

Definition 5. Let AFL(S) = 〈ArgL(S),AT 〉 be an argumentation framework and S ⊆ ArgL(S) a set of
arguments.
• S attacks an argument a if there is an a′ ∈ S such that (a′, a) ∈ AT ;
• S defends an argument a if S attacks every attacker of a;
• S is conflict-free if there are no arguments a1, a2 ∈ S such that (a1, a2) ∈ AT ;
• S is admissible if it is conflict-free and it defends all of its elements.

An admissible set that contains all the arguments that it defends is a complete extension ofAFL(S). Below
are definitions of some other extensions of AFL(S):
• a preferred extension of AFL(S) is a maximal (with respect to ⊆) complete extension of ArgL(S);
• a stable extension of ArgL(S) is a complete extension of ArgL(S) that attacks every argument not in

it;
• the grounded extension ofAFL(S) is the minimal (with respect to⊆) complete extension of ArgL(S).

In what follows we shall refer to either complete (cmp), grounded (grd), preferred (prf) or stable (stb)
semantics as completeness-based semantics. We denote by Extsem(AFL(S)) the set of all the extensions
of AFL(S) under the semantics sem ∈ {cmp, grd, prf, stb}. The subscript is omitted when this is clear
from the context.

Definition 6. Given a sequent-based argumentation framework AFL(S), the semantics as defined in Def-
inition 5 induces corresponding (nonmonotonic) entailment relations:

• Skeptical entailment: S |∼∩L,sem φ iff for every extension E ∈ Extsem(AFL(S)), there is Γ⇒ φ ∈ E
for Γ ⊆ S

• Credulous entailment: S |∼∪L,sem φ iff for some extension E ∈ Extsem(AFL(S)), there is Γ⇒ φ ∈ E
for Γ ⊆ S

• Weakly skeptical entailment: S |∼e
L,sem φ iff there is an a ∈ ArgL(S) with Con(a) = φ such that

a ∈ E for every E ∈ Extsem(AFL(S)).4

Example 4. Consider again the framework of Example 3. It holds that S |∼∪CL,prf p and S |∼∪CL,prf ¬p, while
S 6|∼?CL,prf p and S 6|∼?CL,prf ¬p for ? ∈ {∩,e}. Moreover, S |∼CL,grd ψ if and only if ψ is a tautology in
classical logic. On the other hand, it is easy to see that S ∪ {r} |∼CL,grd r and S ∪ {r} 6|∼CL,grd ¬r, since
e.g. r ⇒ r is in the grounded extension of S ∪ {r}.

3 Preference functions and prioritized argumentation
We now formulate a general setting for prioritized sequent-based argumentation, allowing to make prefer-
ences among different arguments.

4Since the grounded extension is unique, |∼∩
L,grd, |∼∪

L,grd and |∼e
L,grd, are the same, and will be denoted by |∼L,grd.
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Definition 7. A priority function for a language L is a function π :L 7→ N+. Given a set of L-formulas S,
we denote: π(S) = {π(φ) | φ ∈ S}.

We now use π for defining a preference relation ≤π on L-sequents. The next example illustrates some
ways of doing so. We shall write a1 ≤π a2 to intuitively indicate that the sequent a1 is at least as preferred
as the sequent a2.5

Example 5. The following are possible conditions for letting a1 ≤π a2:6

1. min(π(Sup(a1))) ≤ min(π(Sup(a2))). In this case only the most preferred formulas in the support
of the sequents are compared.

2. max(π(Sup(a1))) ≤ max(π(Sup(a2))). Here, for every formula in the support of a2 there is a more
preferred formula in the support of a1.

3. max(π(Sup(a1))) ≤ min(π(Sup(a2))). In this case all the formulas in the support of a1 are at least
as preferred as the formulas in the support of a2.

4. min(π(Sup(a1)\Sup(a2))) ≤ min(π(Sup(a2)\Sup(a1))). Like in the first item, the most preferred
formulas are compared, but now only the formulas that are not part of the support of the other
argument.

5. f(Sup(a1)) ≤ f(Sup(a2)), where f is an aggregation function on Sup(ai) (like the average, median,
summation of the π-values of the supports, or the max/min function on the support, as in the previous
items).

6. Sup(a1) �s Sup(a2) if either Sup(a1) = ∅ or Sup(a1) = Sup(a2) or there is an i ∈ N, such that:

• {ψ∈Sup(a1) |π(ψ)= i} ) {ψ∈Sup(a2) |π(ψ)= i},
• {ψ∈Sup(a1) |π(ψ)=j}={ψ∈Sup(a2) |π(ψ)=j} for every j < i.

7. Sup(a1) �c Sup(a2) if either Sup(a1) = ∅ or there is an i ∈ N such that:

• |{ψ∈Sup(a1) |π(ψ)= i}|> |{ψ∈Sup(a2) |π(ψ)= i}|,
• |{ψ∈Sup(a1) |π(ψ)=j}|= |{ψ∈Sup(a2) |π(ψ)=j}| for every j < i,

or for every i ∈ N:

|{ψ∈Sup(a1) |π(ψ)= i}|= |{ψ∈Sup(a2) |π(ψ)= i}|.

Remark 1. The last two items of Example 5 are inspired by Brewka’s approach to reasoning with preferred
theories [11]. This approach is adjusted to our case by viewing the arguments’ support sets as stratified
theories, where each stratification consists of the formulas with the same π-value. Accordingly �s is a
subset-inclusion comparison, and �c is a comparison by cardinality.

Remark 2. The Items 1, 2, 4, 6 and 7 of Example 5 are pre-orders, that is: ≤π is reflexive (a ≤π a) and
transitive (if a ≤π b and b ≤π c then a ≤π c). Whether the relation in Item 5 is a pre-order depends on the
function f .

The orders in Items 1, 4, 6 and 7 and their strict counterparts are also left monotonic: if a ≤π b (resp.
a <π b) and Sup(a) ⊆ Sup(a′) then a′ ≤π b (resp. a′ <π b).

Example 6. In Example 3, let π(p) = 1, π(q) = 2 and π(¬p ∨ ¬q) = 3. Consider each of the seven
instances for ≤π from Example 5:

1. When the most preferred supports are compared we have that a1 <π a2 <π a3, a1 <π a7, a8 <π a2,
a6 <π a3, and a6 = a8.

5When a1 ≤π a2 we shall sometimes write a1 = a2 and a1 <π a2 to indicate, respectively, that a2 ≤π a1 and that a2 6≤π a1.
6We let min(∅) = max(∅) = f(∅) = 0.
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Figure 2: Part of the sequent-based argumentation graph for S = {p, q,¬p∨¬q}, the prioritized case from
Example 7

2. When the least preferred supports are compared we still have a1 <π a2 <π a3, a1 <π a7 and
a6 <π a3, but now a2 <π a8 and only a6 <π a8.

3. The max-min-comparison yields again a1 <π a2 <π a3, a1 <π a7 and a6 <π a3, but this time a2

and a6 are ≤π-incomparable with a8.

4. Clearly, when the comparison takes place on restricted support sets, a1 <π a2 <π a3, a1 <π a7,
a8 <π a2 and a6 <π a3, since the restriction on the support set has no effect here and thus is the
comparison the same as the first item. However, a6 <π a8, since π(p) < π(¬p ∨ ¬q),

5. If f(Γ) = 1
|Γ|
∑
φ∈Γ π(φ), then a2 = a8 and a6 <π a8.

6. According to �s, we have that a8 <π a2 and a6 <π a8.

7. Similarly, according to �c, a8 <π a2 and a6 <π a8.

Definition 8. Let R be a sequent elimination rule as in Definition 3 and let ≤π be a preference order on
L-arguments. We say that R is ≤π-applicable if it is applicable in the standard (non-prioritized) case and
the instance a2 of the attacked argument that is obtained by the application is not <π-smaller than (i.e., not
<π-preferred over) the instance a1 of the attacking argument that is obtained by the same application. In
this case we say that a1 R≤π

-attacks a2.7,8

Remark 3. Note that the first item of Example 5 might lead to some counter-intuitive situations. Consider
for example the set S = {p,¬p, q} where π(q) = 1, π(¬p) = 2 and π(p) = 3. Then ¬p ⇒ ¬p attacks
p ⇒ p, which cannot defend itself, but q, p ⇒ p attacks ¬p ⇒ ¬p, since q is preferred over p and ¬p.
A possible solution would be to only consider compact arguments: an S-argument Γ ⇒ φ is compact iff
there is no S-argument Γ′ ⇒ φ for some Γ′ ⊂ Γ. However, this places a restriction on the arguments
of the framework. Another solution is to restrict the parts of the support that determine the strength of an
argument, such as in Item 4 of Example 5.

Example 7. Consider again Example 3. Figure 2 depicts a prioritized version of Figure 1 for the π-
assignment from Example 6 and the priority ordering in Item 6 of Example 5. In this case a1 and a4 are
no longer attacked, and while a4 and a7 R-attack each other in the original framework, in the prioritized
setting a4 R≤π -attacks a7 but not vice versa. Indeed, {p} = {ψ∈Sup(a4) |π(ψ) = 1} ) {ψ∈Sup(a7) |
π(ψ)=1} = ∅.

Remark 4. Since we assume that an argument with empty support has always priority value 0, according to
each of the attack rules in Example 2, sequents with empty support are maximally strong: attacks by such
sequents are always successful.

7When π is clear from the context it will be omitted from ≤π .
8Attacks that are based on priorities are sometimes called defeats, to distinguish them from ‘pure’ attacks.
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The definition of a sequent-based argumentation framework, now with a priority function, is very sim-
ilar to the one given in Definition 4.

Definition 9. Let L = 〈L,`〉 be a core logic, C a corresponding sound and complete sequent calculus, AR
a set of attack rules, π a priority function on L, and ≤π a preference order on L-sequents. The prioritized
sequent-based argumentation framework for the set S of formulas (induced by L, C, AR, and ≤π), is a
triple: AF≤π

L,AR(S) = 〈ArgL(S),AT ,≤π〉, where AT ⊆ ArgL(S) × ArgL(S) and (a1, a2) ∈ AT iff a1

R≤π
-attacks a2 for someR ∈ AR.

Like before, we will omit the subscripts L, AR and/or π if these are known or arbitrary.
The Dung-style semantics from Definition 5 are defined equivalently forAF≤L (S) = 〈ArgL(S),AT ,≤〉,

now with respect to both AT and ≤. Based on this, we define the entailment relations for AF≤L (S) with
respect to the different semantics as in Definition 6. For a given semantics sem and ? ∈ {∪,∩,e}, the
relation is denoted by |∼?,≤L,sem (super/subscripts are omitted when they are clear from the context).

Example 8. The flat case (without priorities) of AF≤CL(S) with S = {p, q,¬p ∨ ¬q} and Ucut as the sole
attack rule is the same as the framework of Example 3. The grounded extension only contains sequents
with empty support sets, since there are complete extensions that contain only two of the arguments a1, a2

and a3. When considering the priority function π from Example 6, in any of the definitions for ≤π from
Example 5, a1 cannot be attacked. Thus S |∼≤CL,grd p. For q the result depends on the choice of ≤π .

• When using the first instance of ≤π from Example 5, a8 ≤π a, for any a ∈ {Γ⇒ ψ | ∅ ⊂ Γ ⊆ S}.
Moreover, a6 and a8 attack each other, one can therefore construct two different admissible sets, one
in which a6 defends a and one in which it does not. Therefore, S |6∼≤CL,grd q.

• According to the fourth and sixth instance of ≤π from Example 5, a8 does not attack a6, thus a6 is
no longer attacked, and so it defends a2. Hence S |∼≤CL,grd q in this case.

4 Some basic properties
Next, we consider some basic properties of prioritized argumentation frameworks and the entailment rela-
tions induced by them.

4.1 Conservativity
For every preferential ordering from Example 5, prioritized reasoning is a conservative extension of the flat
case:

Proposition 1. If ≤π is degenerated (i.e., π is uniform) then |∼?L,sem and |∼?,≤L,sem are the same for every
? ∈ {∩,∪,e} and sem ∈ {grd, cmp, prf, stb}.

Proof. (Sketch) Immediate from Definition 8 of R≤π
-attacks since no arguments are ≤π-preferred over

others, thusR≤π
-attacks coincide withR-attacks.

4.2 Rationality postulates
Caminada and Amgoud [1, 12] propose several postulates for argumentation reasoning. Below we consider
those postulates using the next definitions.

Definition 10. Let L = 〈L,`〉 be a propositional logic and S a set of L-formulas.

• The transitive closure of S with respect to the logic L is the set CNL(S) = {ψ | S ` ψ}.

• S is L-consistent if there is no Γ ⊆ S such that ` ¬
∧

Γ.

• A subset T ⊆ S is an L-minimal conflict of S, if it is not L-consistent, but T \ {ψ} is L-consistent
for every ψ ∈ T .
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• Free(S) is the set of formulas that are not part of any minimal conflict of S.

Definition 11. [1, 12] The postulates below refer to a prioritized sequent-based argumentation framework
AF≤L (S) = 〈ArgL(S),AT ,≤π〉, a semantics sem of it (i.e., one of those in Definition 5), every extension
E ∈ Extsem(AF≤L (S)), and arbitrary argument a ∈ ArgL(S).

• Closure of extensions: Con(E) = CNL(Con(E)).

• Closure under sub-arguments: if a ∈ E and b ∈ Sub(a) then b ∈ E .

• Weak Closure under sub-arguments: if a ∈ E , b ∈ Sub(a) and b ≤ a, then b ∈ E .

• Consistency: Con(E) is consistent.

• Exhaustiveness: if Sup(a) ∪ {Con(a)} ⊆ Con(E), a ∈ E .

• Weak exhaustiveness: if Sup(a) ⊆
⋃
b∈E Sup(b), a ∈ E .

• Free precedence: ArgL(Free(S)) ⊆ E .

Below, we shall consider these postulates under the following assumptions:

1. The core logic is non-trivial (there is no φ such that both ` φ and ` ¬φ) and contrapositive (Γ `
¬
∧

∆ implies that (Γ \ Γ′),∆′ ` ¬
∧

((∆ \∆′) ∪ Γ′), for ∆′ ⊆ ∆ and Γ′ ⊆ Γ).

2. The preferential order ≤π and its strict counterpart <π are left monotonic: If a ≤π b (resp. a <π b)
and Sup(a) ⊆ Sup(a′) then a′ ≤π b (resp. a′ <π b).

3. Given a priority function π for L, we will consider preference orders �π on sets of L-formulas for
which �π and ≺π are monotonic, reflexive and transitive relations (as in Items 1, 4, 6, and 7 in
Example 5). We lift �π to sequents as follows: a ≤π b iff Sup(a) �π Sup(b).

Proposition 2. Let AF≤L (S) be a prioritized framework in which the core logic and the preferential or-
der satisfy the three conditions specified above. Suppose also that DUcut is the attack rule. Then, for
every completeness-based semantics, AF≤L (S) satisfies closure of extensions, weak closure under sub-
arguments, consistency, and weak exhaustiveness. When ConUcut is also an attack rule,AF≤L (S) satisfies
free precedence as well.

The following lemmas are required to prove Proposition 2.

Lemma 1. Let E be a complete extension of AF≤L (S). If (1) a = ∆ ⇒ δ ∈ E and b = Γ ⇒ γ ∈ E , (
2) a < b, (3) Γ′ ⊆ Γ, (4) ∆,Γ′ ` ψ, and (5) ∆ ∪ Γ′ is consistent, then Γ′,∆⇒ ψ ∈ E .

Proof. Suppose that d = Θ⇒ φ attacks c = Γ′,∆⇒ ψ. Since Γ′ ∪∆ is consistent (by Condition (5)), d
DUcut attacks c. Hence c 6< d. By left monotonicity a 6< d. Assume for a contradiction that b < d. Since
a < b (by Condition (2)), also a < d, which is a contradiction. Thus, b 6< d. Since d DUcut attacks c, there
is a β ∈ Γ′ ∪∆ for which both γ ⇒ ¬β and β ⇒ ¬γ are derivable. If β ∈ ∆ then d DUcut attacks a. If
γ ∈ Γ′ then d DUcut attacks b. By the admissibility of E there is an f ∈ E that attacks d, and so f defends
c from d.

Lemma 2. If a 6< b and Sup(b) ⊆ Sup(b′), then a 6< b′.

Proof. Suppose that a 6< b and Sup(b) ⊆ Sup(b′). Assume for a contradiction that a < b′. By reflexivity,
b ≤ b, and so by left monotonicity, b′ ≤ b. By transitivity, a < b, which contradicts our supposition.

Lemma 3. Let E be a complete extension of AF≤L (S). If Γ ⇒ γ and ∆ ⇒ δ are in E and Γ,∆ ⇒ φ ∈
ArgL(S), then Γ,∆⇒ φ is also in E .
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Proof. We start with assuming that DUcut is the only attack rule. Suppose that a = Θ ⇒ τ ∈ ArgL(S)
attacks b = Γ,∆ ⇒ φ. Then⇒ τ ↔ ¬τ ′ is derivable in C for some τ ′ ∈ Γ ∪∆ and Γ ∪∆ 6≺π Θ. By
left monotonicity, also Γ 6≺π Θ and ∆ 6≺π Θ. Thus b 6<π a, ∆ ⇒ δ 6<π a, and Γ ⇒ γ 6<π a. Suppose,
without loss of generality, that τ ′ ∈ ∆. Then a attacks ∆⇒ δ. Since E is admissible there is some a′ ∈ E
that attacks a. This shows that E defends b and since E is complete, b ∈ E .

Now, suppose that ConUcut is one of the attack rules and assume for a contradiction that Γ,∆ ⇒ φ is
ConUcut-attacked. In this case Γ ∪∆ is inconsistent. We that have either ∆ 6≺ Γ or Γ 6≺ ∆. Without loss
of generality we suppose ∆ 6≺ Γ.

Since Γ∪∆ is inconsistent, there is a maximal ∆′ ⊆ ∆ for which Γ∪∆′ is consistent. (Note for this that
Γ is consistent since otherwise Γ ⇒ γ is ConUcut attacked and cannot be defended, which is impossible
since Γ⇒ γ ∈ E . ) Thus, there is a δ′ ∈ ∆ \∆′ for which Γ,∆′ ` ¬δ′. Let d = Γ,∆′ ⇒ ¬δ′ ∈ ArgL(S)
and a = ∆⇒ δ. Note that a 6< d by Lemma 2. So, d DUcut attacks a.

Hence, there is a e = Θ ⇒ ψ ∈ E that defends a from this attack by attacking d. Note that e does
not ConUcut-attack d since Γ ∪∆′ is consistent. Hence, d 6< e and there is a β ∈ Γ ∪∆′ for which both
ψ ⇒ ¬β and β ⇒ ¬ψ are derivable.

We have two cases: (a) β ∈ Γ and (b) β ∈ ∆′. We now show that both lead to a contradiction.
If (a) holds, then by left monotonicity b = Γ⇒ γ 6< e which means that e attacks b in contradiction to

the conflict-freeness of E .
If (b) holds, then a < e, since otherwise e DUcut attacks a in contradiction to the conflict-freeness of

E . Since Θ ` ¬β there is a maximal Θ′ ⊆ Θ for which ∆ ∪ Θ′ is consistent and for which ∆ ∪ Θ′ ` ¬α
for some α ∈ Θ \ Θ′. By Lemma 1, a′ = ∆,Θ′ ⇒ ¬α ∈ E . By left monotonicity a′ < e. But then a′

attacks e in contradiction to the conflict-freeness of E .

Proof of Proposition 2. We show each postulate:
Weak Closure under sub-argument: Suppose that a = Γ ⇒ ψ ∈ E and let b = ∆ ⇒ ψ ∈ Sub(a) and
b ≤ a. Thus, ∆ ⊆ Γ. Suppose some c attacks b. Thus, b 6< c and since b ≤ a, also a 6< c. Hence, c also
attacks a. Since E defends a, it attacks c and so also b is defended by E . Since E is complete, b ∈ E .
Closure of extensions: Con(E) ⊆ CNL(Con(E)) holds by the reflexivity of L. For Con(E) ⊇ CNL(Con(E)),
let φ ∈ CNL(Con(E)). Since L is finitary, there are φ1, . . . , φn ∈ Con(E) for which φ1, . . . , φn ⇒ φ is
derivable in C. Thus, there are a1 = Γ1 ⇒ φ1, . . . , an = Γn ⇒ φn ∈ E . By n applications of cut,
Γ1, . . . ,Γn ⇒ φ ∈ E . Hence φ ∈ Con(E).
Consistency: Suppose that Con(E) is inconsistent. Thus, there are φ1, . . . , φn ∈ Con(E) for which ⇒
¬
∧n
i=1 φi is derivable in C. Since there are a1 = Γ1 ⇒ φ1, . . . , an = Γn ⇒ φn ∈ E , by Lemma 3

Γ1, . . . ,Γn ⇒
∧n
i=1 φi ∈ E . By Contraposition

∧n
i=1 φi ⇒ is derivable in C. Now, by Cut and Lemma 3,

Γ1, . . . ,Γn ⇒ ∈ E . By Contraposition, Monotonicity and Lemma 3, b = Γ1, . . . ,Γn ⇒ ¬γ ∈ E where
γ ∈ Γ1. Clearly, b attacks a1, which contradicts the conflict-freeness of E .
Weak exhaustiveness: Suppose that a = ∆ ⇒ ψ ∈ ArgL(S) such that ∆ ⊆

⋃
b∈E Sup(b). Since ∆ is

finite, there are b1, . . . , bn ∈ E such that ∆ = Sup(b1)∪ . . .∪Sup(bn). By n−1 applications of Lemma 3,
a ∈ E .
Free precedence: Assume that ConUcut is part of the attack rules as well. Let a = Γ ⇒ φ where
Γ ⊆ Free(S). In particular, Γ is consistent, and so a cannot be ConUcut-attacked. Suppose that b = ∆⇒ δ
attacks a. Then ⇒ δ ↔ ¬γ is derivable in C for some γ ∈ Γ. By Cut, ∆ ⇒ ¬γ is also derivable and
Cut and Contraposition again show that⇒ ¬

∧
(∆ ∪ {γ}) is derivable in C. Since γ is not a member of a

minimally inconsistent subset of S, there is a Θ ⊆ ∆ for which c =⇒ ¬
∧

Θ is derivable in C. Thus, b is
attacked by c. Since c has no attackers, c ∈ E . Thus, E defends a and thus a ∈ E by the completeness of
E .

Some negative results are reported next:

1. Exhaustiveness is not satisfied by every framework that satisfies the requirements of Proposition 2
(just Weak exhaustiveness is satisfied):

Example 9. Let S = {p ∧ q, q, s,¬s, t ∧ (¬s ∨ ¬q),¬t} and assume π(p ∧ q) = 1, π(q) = 3,
π(s) = π(¬s) = π(t ∧ (¬s ∨ ¬q)) = π(¬t) = 2 where ≤π is as in Example 5 Items 1, 4, 5,
or 6. Here, E = {⇒ φ | ` φ} ∪ {p ∧ q ⇒ φ | p ∧ q ` φ} is a complete extension. Note that
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q ⇒ q /∈ E . The reason is that s, t∧ (¬s∨¬q)⇒ ¬q attacks q ⇒ q, while no argument in E attacks
s, t ∧ (¬s ∨ ¬q)⇒ ¬q. Moreover E does not defend any other argument in ArgL(S) \ E .

2. Consistency does not hold for Undercut:

Example 10. Consider the flat framework AFCL(S) of Example 3, for S = {p, q,¬p ∨ ¬q}. It can
be shown that S = {a1, a2, a3, a4, a5} is admissible in AFCL(S), however, Con(S) is inconsistent.

3. Sub-argument closure for complete extensions does not hold when ConUcut is part of the system:

Example 11. Let S = {p ∧ q, s, r, r ⊃ (¬p ∧ ¬s)} and assume π(p ∧ q) = 1, π(r) = π(r ⊃
(¬p ∧ ¬s)) = 2 and π(s) = 3 where ≤π is as in Example 5 Item 1. Note that there is a complete
extension with a = p ∧ q, s⇒ s but without b = s⇒ s. This follows since the only attacker of a is
c = p ∧ q, r, r ⊃ (¬p ∧ ¬s)⇒ ¬s, but c is ConUcut-attacked and thus cannot be defended.9

4.3 Conflict preservation
An attack in a sequent-based argumentation frameworkAFL(S) will not always be successful in the prior-
itized argumentation framework AF≤L (S), because the attacked argument might be ≤π-stronger than the
attacking argument. This way, it might be that attacks and conflicts are lost. This is sometimes avoided
by requiring that attacks are always symmetric (see, e.g., [16]) or by reversing the attacks and rejecting the
attacking argument instead of the attacked argument (see, e.g., [13]). In the ASPIC+ framework [19] this
is handled taking the structure of arguments into account.

The next proposition shows that argumentation frameworks with priorities are conflict preserving: ex-
tensions of the prioritized framework are conflict-free in the non-prioritized case.

Proposition 3. Let AF≤L (S) = 〈ArgL(S),AT ,≤〉 be a prioritized sequent-based argumentation frame-
work with Ucut and/or DUcut that satisfies the requirements of Proposition 2 and letAFL(S) = 〈ArgL(S),AT 〉
be the corresponding flat (i.e., preference-free) sequent-based framework. For any completeness-based se-
mantics sem (Definition 5), we have that:

1. any E ∈ Extsem(AF≤L (S)) is conflict-free in AFL(S),

2. any E ∈ Extsem(AFL(S)) is conflict-free in AF≤L (S).

Proof. Let sem ∈ {cmp, grd, prf, stb}.

1. Let E ∈ Extsem(AF≤L (S)). Suppose that there are a = Γ ⇒ γ and b = ∆ ⇒ δ in E such that
(a, b) ∈ AT . Assume first that DUcut is the attack rule. By Lemma 3 and the monotonicity of
L we have that a′ = Γ,∆ ⇒ γ ∈ E . Since (a′, b) ∈ AT ≤ (by left monotoncity of ≤) this is a
contradiction to E ∈ Extsem(AF≤L (S)).

Suppose now that Ucut is the attack rule. Then⇒ γ ↔ ¬
∧

∆′ is derivable in C for some ∆′ ⊆ ∆.
By Cut Γ⇒ ¬

∧
∆′ is derivable in C and by Contraposition and Monotonicity also b′ = ∆⇒ ¬

∧
Γ

and a′ = Γ ⇒ ¬
∧

∆ are derivable. Since a′ (resp. b′) has the same attackers as a (resp. b), also
a′, b′ ∈ E by the completeness of E . It is easy to see that either (a′, b′) ∈ AT ≤ or (b′, a′) ∈ AT ≤, a
contradiction to E ∈ Extsem(AF≤L (S)).

2. This follows immediately from the fact that everyR≤-attack is in particular anR-attack.

By Proposition 3 any completeness-based extension of the prioritized framework is still conflict-free
in the flat case, and so no conflicts are lost, although, as shown in Example 8, the extensions in both
frameworks are not the same.

An example, discussed in [19] for the ASPIC+ framework, is the following:

9Given the result of Proposition 4, this is not a problem for preferred and stable semantics.
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Example 12. Let AF≤CL(S) = 〈ArgCL(S),AT ,≤π〉 be a prioritized sequent-based argumentation frame-
work based on classical logic as the core logic, the attack rules DUcut and ConUcut, and the formulas
S = {p, q,¬p}, such that π(q) = 1, π(¬p) = 2, π(p) = 3. Some of the arguments of ArgCL(S) are the
following:
a1 = p⇒ p a2 = q ⇒ q a3 = ¬p⇒ ¬p
a4 = p, q ⇒ p a5 = p, q ⇒ q a6 = p, q ⇒ p ∧ q
a7 = ¬p, q ⇒ ¬p a8 = ¬p, q ⇒ q a9 = ¬p, q ⇒ ¬p ∧ q

The preference-based argumentation frameworks (PAFs) of [3, 4] result in a stable extension that contains
both a3 and a6, and so consistency is not preserved by PAFs. In our case, when e.g.,≤π=�s (the sixth item
in Example 5) is taken as the preference ordering, this problem is avoided, since every stable extension that
contains a3 contains also a7, thus all the sequents whose supports sets are {p} or even {q, p} are attacked
by the latter.10

5 Reasoning with maximally consistent subsets
A well-known method for handling inconsistent sets of formulas is by taking the maximally consistent
subsets of this set [22]. In the flat case, corresponding entailments are defined as follows:

Definition 12. Let L = 〈L,`〉 be a propositional logic and S a set of L-formulas. We denote by MCSL(S)
the set of all the maximally consistent subsets of S (with respect to ⊆).

• S |∼mcsψ if and only if ψ ∈ CNL(
⋂
MCSL(S)),

• S |∼∩mcsψ if and only if ψ ∈
⋂
T ∈MCSL(S) CNL(T ),

• S |∼∪mcsψ if and only if ψ ∈
⋃
T ∈MCSL(S) CNL(T ).

It has been shown that sequent-based argumentation is a useful platform for representing and reasoning
with maximally consistent subsets [8, 6]. Here we extend these results to the prioritized case.

We continue to use �π as a preference order, determined by π, on sets of L-formulas. In what follows
we shall abbreviate �π [resp. ≤π] by � [resp. ≤], and write T ≺ S to denote that T � S and S 6� T .
Accordingly, the set of the �-most preferred maximally consistent subsets of an S is defined as follows:

Definition 13. MCS�L (S) = {T ∈ MCSL(S) | @T ′ ∈ MCSL(S) such that T ′ ≺ T }.

Example 13. Consider again the set S = {p, q,¬p ∨ ¬q} from Example 3 and the priority assignment
π from Example 6 on S. We have that: MCSCL(S) = {{p, q}, {p,¬p ∨ ¬q}, {q,¬p ∨ ¬q}}. When ≤π
is the preference order as in Items 2, 4, 5 (when e.g. f is the average function), 6 and 7 of Example 5,
we get: MCS�π

CL (S) = {{p, q}}. When ≤π is as in Item 1 of Example 5 we have that MCS�π

CL (S) =
{{p, q}, {p,¬p ∨ ¬q}}.

Now we can consider the prioritized versions of the entailment relations from Definition 12.

Definition 14. For a propositional logic L = 〈L,`〉, a set S of L-formulas, and a priority function π on L,
we define:
• S|∼�L,mcsφ if and only if φ ∈ CNL(

⋂
MCS�L (S));

• S|∼�L,∩mcsφ if and only if φ ∈
⋂
T ∈MCS�

L (S)
CNL(T );

• S|∼�L,∪mcsφ if and only if φ ∈
⋃
T ∈MCS�

L (S)
CNL(T )

Example 14. In Example 13 we have that S |∼∪mcsψ for every ψ ∈ S, but S |∼? φ when ? ∈ {mcs,∩mcs}
only if φ is a CL-tautology (since

⋂
MCSCL(S) = ∅). In the prioritized case, when ≤π is as defined in

Items 2, 4, 5 (for e.g. the average function), 6 and 7 of Example 5, we have that S |∼�π

? φ for every ? ∈
{mcs,∩mcs,∪mcs} and φ ∈ {p, q}. If≤π is as in Item 1 of Example 5, then S |∼�? p for ? ∈ {mcs,∩mcs}
and S |∼�∪mcs φ for φ ∈ S.

10As noted in [19], in ASPIC+ this problem is avoided as well.
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The main result of this section is given in the next proposition. It extends the results in [8, 6] to the
prioritized case.

Proposition 4. Let L = 〈L,`〉 be a contrapositive propositional logic, S a finite set of L-formulas, and
π a priority relation on L. Let � be a monotonic and transitive preference relation on sets of formulas
that is induced by π, and let a ≤ b iff Sup(a) �π Sup(b) be the induced preference relation on arguments.
Denote byAF≤L (S) = 〈ArgL(S),AT ,≤〉 the corresponding prioritized framework whereAT is based on
the rules DUcut and ConUcut. Then:

1. S |∼∩,≤L,stb φ iff S |∼∩,≤L,prf φ iff S |∼�L,∩mcs φ,

2. S |∼e,≤
L,grd φ iff S |∼e,≤

L,stb φ iff S |∼e,≤
L,prf φ iff S |∼�L,mcs φ,

3. S |∼∪,≤L,stb φ iff S |∼∪,≤L,prf φ iff S |∼�L,∪mcs φ.

We sketch here the proof of the first item (the proofs of the other items are similar). First, some lemmas.

Lemma 4. If T ∈ MCS�L (S) and S ′ ⊆ S is a consistent set, then S ′ 6≺ T .

Proof. Since S ′ is consistent, there is a S ′′ ∈ MCSL(S) such that S ′ ⊆ S ′′. By the left monotonicity of �,
S ′′ � S ′. Since T ∈ MCS�L (S), S ′′ 6≺ T and by the transitivity of � also S ′ 6≺ T .

Lemma 5. If S is finite and T ∈ MCS�L (S), then ArgL(T ) ∈ Stb(AF�L (S)).

Proof. Suppose that T ∈ MCS�L (S) and E = ArgL(T ). We show that E is stable.
Assume for a contradiction that there are a = Γ⇒ γ and b = ∆⇒ δ in E such that a attacks b. Then

⇒ γ ↔ ¬δ′, where δ′ ∈ ∆, is derivable in C. But then ⇒ ¬
∧

(Γ ∪ {δ′}) is derivable in C by Cut and
Contraposition. Since Γ ∪ {δ′} ⊆ T this is a contradiction to the consistency of T .

Suppose that b = Θ⇒ τ ∈ ArgL(S) \ E . Thus, Θ \ T 6= ∅. Suppose first that Θ is inconsistent. Then
⇒¬

∧
Θ is derivable in C, it attacks b and it is in E since it has no attackers.

Now suppose that Θ is consistent. By Lemma 4, Θ 6≺ T . Let τ ∈ Θ \ T . Thus, there is a finite Γ′ ⊆ T
for which Γ′ ⇒ ¬τ is derivable. By monotonicity, a = T ⇒ ¬τ ∈ E .11 Since Θ 6≺ T , a attacks b.

Thus, whether Θ is consistent or not, we have shown that E attacks any argument in ArgL(S) \ E , and
so E is stable.

Lemma 6. If E ∈ Cmp(AF≤L (S)), there is a T ⊆ S for which E = ArgL(T ).

Proof. Let T =
⋃
a∈E Sup(a), Γ ⊆ T , and b = Γ ⇒ φ ∈ ArgL(S). By weak exhaustiveness (Proposio-

tion 2), b ∈ E . Thus, E = ArgL(T ).

Lemma 7. If S is finite and E ∈ Prf(AF≤L (S)), there is some T ∈ MCS�L (S) for which E = ArgL(T ).

Proof. By Lemma 6 there is a T ⊆ S for which E = ArgL(T ). Assume first for a contradiction that T is
inconsistent. Thus, there is a Γ ⊆ T for which a =⇒ ¬

∧
Γ is derivable in C. By weak exhaustiveness

(Proposition 2), b = Γ⇒
∧

Γ ∈ E . b is attacked by a and cannot be defended, which is a contradiction to
the fact that E is admissible. Thus, T is consistent.

Suppose now for a contradiction that there is a T ′ ∈ MCS�L (S) for which T ′ ≺ T . By Lemma 5,
ArgL(T ′) ∈ Stb(AF≤L (S)). Since E ∈ Prf(AF≤L (S)), ArgL(T ) \ ArgL(T ′) 6= ∅, thus there is a γ ∈
T \ T ′. Then there is a ∆ ⊆ T ′ for which ∆⇒ ¬γ is derivable in C. By monotonicity, also c = T ′ ⇒ ¬γ
and d = T ⇒ γ are derivable in C (note that γ ⇒ γ is derivable as well). Since T ′ ≺ T , c attacks d.
Thus, there is a e = Θ⇒ θ ∈ E which attacks c. Hence, T ′ 6≺ Θ. By left monotonicity and since Θ ⊆ T ,
T � Θ. By transitivity, T ′ � Θ, which is a contradiction. Altogether, this shows that T ∈ MCS�L (S).

Now we can show Proposition 4:
Proof.

11Note that, if S would be infinite, T might be infinite as well, in which case a would not be a valid sequent.
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(⇐) Suppose that S |∼�L,∩mcs φ and let E ∈ Prf(AF≤L (S)). By Lemma 7, there is a T ∈ MCS�L (S) for

which E = ArgL(S). By the assumption T ` φ, hence T ⇒ φ ∈ E . This shows that S |∼∩,≤L,prf φ,

which also implies that S |∼∩,≤L,stb φ.

(⇒) Suppose that S |∼∩,≤L,stb φ and let T ∈ MCS�L (S). By Lemma 5, E = ArgL(T ) ∈ Stb(AF≤L (S)).

Thus, there is a ∆⇒ φ ∈ E for which ∆ ⊆ T . Hence T ` φ, which shows that S |∼�L,∩mcs φ.

Remark 5. Lemma 7 (and so Proposition 4) does not hold for infinite sets (for instance, for the orderings
in Example 5, Items 6 and 7). Here is an example: let AF≤CL(S) = 〈ArgCL(S),AT ,≤〉 be a prioritized
sequent-based argumentation framework, with CL as core logic, DUcut and ConUcut as attack rules and
S = {pi | i ≥ 1} ∪ {q,¬q} where π(pi) = 1 for all i ≥ 1, π(q) = 2 and π(¬q) = 3. We have two MCSs,
T = {pi | i ≥ 1} ∪ {q} and T ′ = {pi | i ≥ 1} ∪ {¬q} where T ≺ T ′. Nevertheless, Arg(T ′) is a stable
extension of AF≤CL(S).12

6 Conclusion
Sequent-based argumentation frameworks provide general and modular formalisms for representing argu-
ments and reasoning with them, using different kinds of languages, logics, and attacks.13 The goal of this
work is to carry these formalisms a step forward and to incorporate external information in the form of pri-
orities that the reasoner might want to introduce for properly choosing the arguments that can be mutually
accepted. Once the priorities have been decided, different orders may be defined for making preferences
among the underlying arguments, and accordingly applying entailment relations for drawing conclusions
from a given set of assertions.

Clearly, the entailment relations that are induced by a prioritized framework depend on many factors,
among which are the choice of the core logics, the attack relations, and the preferences among the argu-
ments. We have shown that in many cases these choices provide the reasoner with a robust framework, sat-
isfying rationality postulates and enjoying other desirable properties, like conflict preservation and strong
links to reasoning with the most preferred maximally consistent subsets of the premises, a well-studied
approach for handling inconsistent information.

There are several other formalisms for supporting prioritized data in the context of argumentation sys-
tems. A detailed comparison to some of these formalisms will be provided in the full version of this work.
Here we only mention one of them, the ASPIC+ framework [19], which also provides a general setting
for (prioritized) logical argumentation. Apart of the different representations of objects (like arguments
and attacks) in the two frameworks, a primary difference from ASPIC+ is that our approach is more proof
theoretically oriented, using tools and methods (like sequents and their derivations by proof systems) from
proof theory. Among others, in future work we plan to strengthen this characteristic of our approach and
provide dynamic proof systems [9] for non-monotonically reasoning with the prioritized data in a proof-like
manner.

We conclude this paper by exemplifying some of the advantages of our approach using the puzzle given
in the introduction (Example 1).

Example 15 (Example 1 continued). Recall the flat owner negotiating with potential tenants about the
construction of a swimming pool (s), a tennis-court (t) and a private car-park (p). The consideration that
the rent (r) increases if more than one facility is constructed can be represented by the formula ψ1 = r ↔
((s ∧ t) ∨ (s ∧ p) ∨ (t ∧ p)). The preferences of the tenants not to increase the rent and not to have two
sport facilities are modeled by ¬r and by ψ2 = s ⊃ ¬t and ψ3 = t ⊃ ¬s, respectively.

This situation may be represented by a prioritized sequent-based frameworkAF≤CL(S) = 〈ArgCL(S),AT ,≤〉,
induced by classical logic, Ucut and ConUcut as attack rules, and set of formulas S = {s, t, p,¬r, ψ1, ψ2, ψ3},
where π(¬r) = 1, π(ψ1) = π(ψ2) = π(ψ3) = 2 and π(s) = π(t) = π(p) = 3. We take the preference
relation by the �s comparison (Item 6 of Example 5).

12Note that for every s = Γ, q ⇒ φ ∈ ArgCL(S) \ ArgCL(T ′) (where Γ ⊆ {pi | i ≥ 1}) the argument t′ = Γ, pk,¬q ⇒ ¬q ∈
ArgCL(T ′) (where pk /∈ Γ) attacks s.

13For a discussion of the advantages of this approach we refer to [6, 7, 8]
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• We have that ¬r ↔
(
¬(s∧ t)∧¬(s∧ p)∧¬(t∧ p)

)
classically follows from ψ1, which implies that

¬r, ψ1 ⇒ ¬(x ∧ y) is in ArgCL(S) for every distinct x, y ∈ {p, s, t}. It follows that every argument
of the form x, y ⇒ x ∧ y for such x, y (suggesting to construct two facilities) is Ucut-attacked by a
more preferred argument.

• Arguments such as s⇒ s and t⇒ t, which suggest to construct a swimming pool and a tennis court
are respectively attacked by the more preferred arguments t, ψ3 ⇒ ¬s and s, ψ2 ⇒ ¬t.

• The argument a = p ⇒ p, suggesting to construct a car park, is attacked by b = ¬r, s, ψ1 ⇒ ¬p.
However, the argument a′ = p,¬r, ψ1, ψ2, ψ3 ⇒ p for the same conclusion is not attacked by b
since a′ < b. In fact, a′ is only attacked by arguments whose support set is classically inconsistent,
for instance S ⇒ ¬p. These attacks are counter ConUcut attacked by the tautological argument
⇒ ¬

∧
S and so a′ is defended.

From the above considerations it follows that the only sequents of the form Γ ⇒ x for some Γ ⊆ S
and x ∈ {s, t, p} that belong to the grounded extension of the prioritized sequent-based argumentation
framework under consideration, are those in which x = p. That is, based on the considerations and the
preferences stated above, according to the grounded semantics of the framework, the flat owner should
decide to build only a parking lot.
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