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Abstract

In this paper we introduce hypersequent-based frameworks for the modeling of defeasible
reasoning by means of logic-based argumentation. These frameworks are an extension of
sequent-based argumentation frameworks, in which arguments are represented not only by
sequents, but by more general expressions, called hypersequents. This generalization allows us
to overcome some of the weaknesses of logical argumentation reported in the literature and to
prove several desirable properties, stated in terms of rationality postulates. For this, we take
the relevance logic RM as the deductive base of our formalism. This logic is regarded as “by
far the best understood of the Anderson-Belnap style systems” (Dunn & Restall, Handbook
of Philosophical Logic, Vol.6). It has a clear semantics in terms of Sugihara matrices, as well
as sound and complete Hilbert- and Gentzen-type proof systems. The latter are defined by
hypersequents and admit cut elimination. We show that hypersequent-based argumentation
yields a robust defeasible variant of RM with many desirable properties (e.g., rationality
postulates and crash-resistance).

1 Introduction

Argumentation theory has been described as “a core study within artificial intelligence” [11].
Among others, it is a standard method for modeling defeasible reasoning. Logical argumentation
(sometimes called deductive or structural argumentation) is a branch of argumentation theory in
which arguments have a specific structure. This includes rule-based argumentation, such as the
ASPIC+ framework [26] and methods that are based on Tarskian logics, like Besnard and Hunter’s
approach [12], in which classical logic is the deductive base (the so-called core logic).

The latter approach was generalized to sequent-based argumentation in [4], where Gentzen-style
sequents [19], extensively used in proof theory, are incorporated for representing arguments, and
attacks are formulated by special inference rules called sequent elimination rules. The result is a
generic and modular approach to logical argumentation, in which any logic with a corresponding
sound and complete sequent calculus can be used as the underlying core logic. A dynamic proof
theory as a computational tool for sequent-based argumentation was introduced in [6]. This allows
for reasoning with these argumentation frameworks in an automatic way.

In this paper we further extend sequent-based argumentation to hypersequents [7, 22, 24]. This
is a powerful generalization of Gentzen’s sequents which was used for providing cut-free Gentzen-
type systems for the relevance logic RM, its 3-valued version RM3 and the modal logic S5. It allows
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a high degree of parallelism in constructing proofs and has some applications in the proof theory of
fuzzy logics (see, e.g., [21]). In the context of argumentation, the incorporation of hypersequents
enables to split sequents into different components, and so different rationality postulates [1, 13]
can be satisfied, some of which are not available otherwise.

The usefulness of logical argumentation with hypersequents is demonstrated here on frame-
works whose core logic is RM. This logic was introduced by Dunn and McCall and later extensively
studied by Dunn, Meyer [17] and Avron [7, 9] (see also [3, 18]). In [18, p.81], RM is regarded as
“by far the best understood of the Anderson-Belnap style systems”. The basic idea behind this
logic (and relevance logics in general) is that the set of premises should be ‘relevant’ to its conclu-
sion. This way some problematic phenomena of classical logic, such as the paradoxes of material
implication, are avoided. In addition, it was shown that RM is semi-relevant, paraconsistent, de-
cidable and has the Scroggs’ property [3, §29.4]. Furthermore, RM has a clear semantics in terms
of Sugihara matrices [3, §29.3] and sound and complete Hilbert- and Gentzen-type proof systems
are available for it (see, e.g., [7, 9]). The latter admit cut elimination and are expressed in terms
of hypersequents, a fact which makes RM particularly suitable for our purpose.

We will show that hypersequent-based frameworks, with RM as the core logic, satisfy the
logic-based rationality postulates from [1] and non-interference and crash-resistance from [14]. In
particular, this proves that such formalisms avoid the problem of logical argumentation raised
in [15], and further discussed in [2] (to which we shall refer below). A byproduct of our approach
is a defeasible variant of RM with many desirable properties.

The rest of the paper is organized as follows. The next two sections contain some preliminary
material: in Sect. 2 we recall some basic notions of sequent-based argumentation, and in Sect. 3
we review the notion of hypersequents and the logic RM. Then, in Sect. 4 we extend sequent-based
argumentation frameworks to hypersequent-based ones, and in Sect. 5 we consider some properties
of these frameworks, instantiated in RM. Finally, in Sect. 6 we conclude.

2 Sequent-based Argumentation

We start by recalling the setting of sequent-based argumentation [4]. Throughout the paper we
consider propositional languages, denoted by L, that may contain connectives in {¬,∧,∨,⊃,↔}.
Sets of formulae are denoted by S, T , finite sets of formulae are denoted by Γ,∆, formulae are
denoted by φ, ψ and atomic formulae are denoted by p, q, all of which can be primed or indexed.
We denote by

∧
Γ (respectively, by

∨
Γ), the conjunction (respectively, the disjunction) of all the

formulae in Γ. Furthermore, we let ¬S = {¬φ | φ ∈ S}.

Definition 1. A logic for a language L is a pair L = 〈L,`〉, where ` is a (Tarskian) consequence
relation for L, satisfying, for all sets T , T ′ of L-formulas and every L-formula φ, the following
properties:

• reflexivity: if φ ∈ T , then T ` φ;

• transitivity: if T ` φ and T ′, φ ` ψ, then T , T ′ ` ψ;

• monotonicity: if T ′ ` φ and T ′ ⊆ T , then T ` φ.

As usual in logical argumentation (see, e.g., [12, 23, 25, 27]), arguments have a specific structure
based on the underlying formal language. In the current setting arguments are represented by the
well-known proof theoretical notion of a sequent.

Definition 2. Let L = 〈L,`〉 be a logic and let S be a set of formulae in L.

• An L-sequent (sequent for short) is an expression of the form Γ ⇒ ∆, where Γ and ∆ are
finite sets of formulae in L and ⇒ is a symbol that does not appear in L.

• An L-argument (argument for short) is an L-sequent Γ ⇒ ψ,1 where Γ ` ψ. Γ is called the
support set of the argument and ψ is its conclusion.

1Set signs in arguments are omitted.
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• An L-argument based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We denote by ArgL(S)
the set of all the L-arguments based on S.

The formal systems used for the constructions of sequents (and so of arguments) for a logic
L = 〈L,`〉, are called sequent calculi [19]. In what follows we shall assume that a sequent calculus
C is sound and complete for its logic (i.e., Γ ⇒ ψ is provable in C iff Γ ` ψ). One of the
advantages of sequent-based argumentation is that any logic with a corresponding sound and
complete sequent calculus can be used as the core logic. Furthermore, unlike other logic-based
approaches to argumentation (see, e.g., [2]), it is not required that the support set is minimal,
nor that it is consistent.2 The construction of arguments from simpler arguments is done by the
inference rules of the sequent calculus [19].

Argumentation systems contain also attacks between arguments. In our case, attacks are
represented by sequent elimination rules. Such a rule consists of an attacking argument (the
first condition of the rule), an attacked argument (the last condition of the rule), conditions
for the attack (the conditions in between) and a conclusion (the eliminated attacked sequent).
The outcome of an application of such a rule is that the attacked sequent is ‘eliminated’. The
elimination of a sequent s = Γ⇒ ∆ is denoted by s or Γ 6⇒ ∆.

Definition 3. A sequent elimination rule (or attack rule) is a rule R of the form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γn 6⇒ ∆n
R

(1)

Let L = 〈L,`〉 be a logic with corresponding sequent calculus C, Γ ⇒ ψ,Γ′ ⇒ ψ′ ∈ ArgL(S) and
let R be an elimination rule as above. If Γ⇒ ψ is an instance of Γ1 ⇒ ∆1, Γ′ ⇒ ψ′ is an instance
of Γn ⇒ ∆n and all the other conditions of R (i.e., Γi ⇒ ∆i for i = 2, . . . , n− 1) are provable in
C, then we say that Γ⇒ ψ R-attacks Γ′ ⇒ ψ′.

Example 1. We refer to [4, 29] for a definition of many sequent elimination rules. Below are
three of them (assuming that Γ2 6= ∅):

Defeat:

Γ1 ⇒ ψ1 ⇒ ψ1 ⊃ ¬
∧

Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2
Def

Undercut:

Γ1 ⇒ ψ1 ⇒ ψ1 ↔ ¬
∧

Γ2 Γ2,Γ
′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

Ucut

Consistency undercut

⇒ ¬
∧

Γ Γ,Γ′ ⇒ ψ

Γ,Γ′ 6⇒ ψ
ConUcut

Note that the attacker and the attacked argument must be elements of ArgL(S).3 A sequent-
based argumentation framework is now defined as follows:

Definition 4. A sequent-based argumentation framework for a set of formulae S based on a logic
L = 〈L,`〉 and a set AR of sequent elimination rules, is a pair AFL(S) = 〈ArgL(S),A〉, where
A ⊆ ArgL(S)×ArgL(S) and (a1, a2) ∈ A iff there is an R ∈ AR such that a1 R-attacks a2.

Example 2. Suppose that {p,¬p} ⊆ S. When classical logic (CL) is the core logic, the sequents
p ⇒ p and ¬p ⇒ ¬p attack each other according to defeat and undercut (see Ex. 1). The
tautological sequent ⇒ ψ ∨¬ψ is not defeated or undercut by any argument in ArgCL(S), since it
has an empty support set.

Given a (sequent-based) argumentation framework AFL(S), Dung-style semantics [16] can be
applied to it, to determine what combinations of arguments (called extensions) can collectively be
accepted from it.

2See [4] for further advantages of this approach.
3By requiring that both the attacking and the attacked argument should be in ArgL(S) we prevent “irrelevant

attacks”, that is: situations in which, e.g., ¬p⇒ ¬p attacks p⇒ p (by Undercut), although S = {p}.
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Definition 5. Let AFL(S) = 〈ArgsL(S),A〉 be an argumentation framework and let S ⊆ ArgsL(S)
be a set of arguments. It is said that:
• S attacks an argument a if there is an a′ ∈ S such that (a′, a) ∈ A;
• S defends an argument a if S attacks every attacker of a;
• S is conflict-free if there are no arguments a1, a2 ∈ S such that (a1, a2) ∈ A;
• S is admissible if it is conflict-free and it defends all of its elements.

An admissible set that contains all the arguments that it defends is a complete extension of
AFL(S). Below are definitions of some other extensions of AFL(S):
• the grounded extension of AFL(S) is the minimal (with respect to ⊆) complete extension of

ArgL(S); 4

• a preferred extension of AFL(S) is a maximal (with respect to ⊆) admissible subset of
ArgL(S);

• a stable extension of AFL(S) is an admissible subset of ArgL(S) that attacks every argument
not in it.

In what follows we shall refer to either complete (cmp), grounded (gr), preferred (prf) or stable
(stb) semantics as completeness-based semantics. We denote by Extsem(AFL(S)) the set of all
the extensions of AFL(S) under the semantics sem ∈ {cmp, gr, prf, stb}. The subscript is omitted
when this is clear from the context.

Example 3. Let AFCL(S) be a sequent-based argumentation framework for S = {p,¬p, q}, based
on CL, with Ucut as the sole attack rule. Then, as noted in Example. 2, the sequent ⇒ p ∨ ¬p
belongs to every complete extension of AFCL(S), since it cannot be undercut-attacked. Similarly,
q ⇒ q also belongs to every complete extension of AFL(S), since ⇒ p ∨ ¬p counter-attacks any
attacker of q ⇒ q that belongs to ArgCL(S).5 This implies that both ⇒ p ∨ ¬p and q ⇒ q are in
the grounded extension of AFCL(S).

Definition 6. Given a sequent-based argumentation framework AFL(S), the semantics as defined
in Def. 5 induces corresponding (nonmonotonic) entailment relations: S |∼∩sem φ (S |∼∪sem φ) iff for
every (some) extension E ∈ Extsem(AFL(S)) there is an argument Γ⇒ φ ∈ E for some Γ ⊆ S.

Example 4. Note that, since the grounded extension is unique, |∼∩gr and |∼∪gr coincide (so both
can be denoted by |∼gr). For instance, in Example 3, p,¬p, q |∼gr q, while p,¬p, q |6∼gr p and
p,¬p, q |6∼gr ¬p.

3 Hypersequents and RM

Ordinary sequent calculi do not capture all the interesting logics. For some logics, which have a
clear and simple semantics, no standard cut-free sequent calculus is known. Notable examples are
the Gödel–Dummett intermediate logic LC, the relevance logic RM and the modal logic S5. A large
range of extensions of Gentzen’s original sequent calculi have been introduced for providing decent
proof systems for different non-classical logics. Here we consider a natural extension of sequent
calculi, called hypersequent calculi. Hypersequents were independently introduced by Mints [22],
Pottinger [24] and Avron [7], nowadays Avron’s notation is mostly used (see, e.g., [8]). Intuitively,
a hypersequent is a finite set (or sequence) of sequents, which is valid if and only if at least one of its
component sequents is valid. This allows to define new inference (and elimination) rules for “multi-
processing” different sequents. These types of rules increase the expressive power of hypersequents
compared to ordinary sequent calculi, and as a result the corresponding argumentation systems
have some desirable properties that are not available for ordinary sequent-based frameworks.

To illustrate the application of hypersequents in argumentation, we take RM as the core logic
and use a hypersequent calculus for it, as well as extended versions of the attack rules for standard
sequents. In this section we formally define what a hypersequent is and present a hypersequent
calculus for RM.

4It is well-known (see [16]) that the grounded extension of a framework is unique.
5This follows since any attacker of q ⇒ q has an inconsistent support.
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3.1 Hypersequents and Inference Rules for Them

Definition 7. An L-hypersequent is a finite multiset of sequents: Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n,
where Γi ⇒ ∆i (1 ≤ i ≤ n) are L-sequents and | is a new symbol, not appearing in L.6 Each
Γi ⇒ ∆i is called a component of the hypersequent.

Note that every ordinary sequent is a hypersequent as well. In what follows, hypersequents are
denoted by G,H, primed or indexed if needed. Given a hypersequent H = Γ1 ⇒ ∆1 | . . . | Γn ⇒
∆n, the support of H is the set Supp(H) = {Γ1, . . . ,Γn} and the consequent of H is the formula
Conc(H) =

∨
∆1∨ . . .∨

∨
∆n. Given a set Λ of hypersequents, we let Concs(Λ) = {Conc(H) | H ∈

Λ}.

Example 5. Like in Gentzen’s sequent calculi, hypersequent axioms have the form A ⇒ A.
Consider the right implication rule of Gentzen’s calculus LK for classical logic (on the left below).
The corresponding hypersequent rule is similar, now with added components (on the right below):

Γ, A⇒ ∆, B

Γ⇒ ∆, A ⊃ B ⇒⊃
G | Γ, A⇒ ∆, B | H
G | Γ⇒ ∆, A ⊃ B | H

⇒⊃

As noted in [8], many sequent rules can be translated like this. However, it can be that there
are two versions (an additive form and a multiplicative form), which are equivalent if contraction,
exchange and weakening are all part of the system. Take for example the right conjunction rule
of LK. The dual hypersequent rule in an additive form is:

G | Γ⇒ ∆, A | H G | Γ⇒ ∆, B | H
G | Γ⇒ ∆, A ∧B | H ⇒∧

and the multiplicative form of the same rule is:

G1 | Γ1 ⇒ ∆1, A | H1 G2 | Γ2 ⇒ ∆2, B | H2

G1 | G2 | Γ1,Γ2 ⇒ ∆1,∆2, A ∧B | H1 | H2
⇒∧

3.2 The Logic RM and the hypersequent calculus GRM

As noted previously, we will demonstrate hypersequent-based argumentation by the core logic RM.
This is the best understood and researched logic among the relevance logics from the Anderson-
Belnap approach [3].7 Moreover, it is paraconsistent, decidable [9], has a simple semantics [3, §29]
and is characterized by a Hilbert-style system [3, §27] (see also [9]). Like other relevance logics
(such as R), RM does not satisfy the classical implication paradoxes φ ⊃ (ψ ⊃ φ), ¬φ ⊃ (φ ⊃ ψ),
(φ∧¬φ) ⊃ ψ and φ ⊃ (ψ ⊃ ψ).8 This makes RM suitable for the modeling of defeasible reasoning
and hence an appropriate core logic for argumentation-based reasoning.

An ordinary cut-free sequent calculus for RM is not known. Fig. 1 presents a hypersequent
proof system for RM, called GRM.

In [7] it is shown that GRM admits cut-elimination and that it satisfies the following soundness
and completeness result for RM:

Theorem 1. Let H = Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n be a hypersequent, where for each 1 ≤ i ≤ n,
Γi = {γi1, . . . , γimi

} and ∆i = {δi1, . . . , δili}. We denote:

τ(H) =
(
¬γ11 ∨ . . . ∨ ¬γ1m1

∨ δ11 ∨ . . . ∨ δ1l1
)
∨

. . . ∨
(
¬γn1 ∨ . . . ∨ ¬γnmn

∨ δn1 ∨ . . . ∨ δnln
)
.

(2)

Then H is derivable in GRM if and only if τ(H) is a theorem RM, that is, the sequent ⇒τ(H) is
derivable in a (complete) sequent calculus for RM [7].

6The common, intuitive interpretation of the sign “|” is disjunction.
7Strictly speaking, RM is a semi-relevance logic: it does satisfy the basic relevance criterion (introduced in [3])

and the minimal semantic relevance criterion [9], but it does not have the variable sharing property (introduced
in [3]), see, e.g., [9].

8Unlike R, RM does satisfy the mingle axiom φ ⊃ (φ ⊃ φ).
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Axioms: G | ψ ⇒ ψ

Logical rules:

[¬⇒]
G | Γ⇒ ∆, ϕ

G | ¬ϕ,Γ⇒ ∆
[⇒¬]

G | ϕ,Γ⇒ ∆

G | Γ⇒ ∆,¬ϕ

[⊃⇒]
G | Γ1 ⇒ ∆1, ϕ G | ψ,Γ2 ⇒ ∆2

G | Γ1,Γ2, ϕ ⊃ ψ ⇒ ∆1,∆2
[⇒⊃]

G | Γ, ϕ⇒ ∆, ψ

G | Γ⇒ ∆, ϕ ⊃ ψ

[∧⇒]
G | Γ, ϕ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆

G | Γ, ψ ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆
[⇒∧]

G | Γ⇒ ∆, ϕ G | Γ⇒ ∆, ψ

G | Γ⇒ ∆, ϕ ∧ ψ

[∨⇒]
G | Γ, ϕ⇒ ∆ G | Γ, ψ ⇒ ∆

G | Γ, ϕ ∨ ψ ⇒ ∆
[⇒∨]

G | Γ⇒ ∆, ϕ

G | Γ⇒ ∆, ϕ ∨ ψ
G | Γ⇒ ∆, ψ

G | Γ⇒ ∆, ϕ ∨ ψ

Structural rules:

[EC]
G | s | s
G | s [EW]

G
G | s

[Sp]
G | Γ1,Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1|Γ2 ⇒ ∆2
[Mi]

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

[Cut]
G | Γ1 ⇒ ∆1, ϕ G | ϕ,Γ2 ⇒ ∆2

G | Γ1,Γ2 ⇒ ∆1,∆2

Figure 1: The proof system GRM [7]

To define hypersequent-based argumentation frameworks, it is not enough to simply take the
hypersequent inference rules to create arguments. A new definition of arguments is required and
sequent elimination rules should be turned into hypersequent elimination rules. This is what we
will do in the next section.

4 Hypersequent-based Argumentation

Given a logic L = 〈L,`〉 with a sound and complete hypersequent calculus H, from now on, an
argument (or an L-hyperargument) is an L-hypersequent (i.e., whose components are L-sequents)
that is provable in H.9 In the remainder of the paper, an argument based on a set S (of formulae
in L), is an L-hyperargument H such that Γ ⊆ S for every Γ ∈ Supp(H). We shall continue to
denote by ArgL(S) the set of arguments that are based on S.

As before, arguments are constructed by the inference rules of the hypersequent calculus under
consideration (see Sect. 3). For the elimination rules, we continue to use the same notation: H
denotes the elimination of the hypersequent H. The structure of such rules remains the same as
before as well: the first hypersequent in the conditions of the rule is the attacking argument, the
last hypersequent in the conditions is the attacked argument and the rest of the conditions are to
be satisfied for the attack to take place.

9Since a sequent is a particular case of a hypersequent and hypersequent calculi generalize sequent calculi,
arguments in the sense of the previous sections are particular cases of the arguments according to the new definition.
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Example 6. The elimination rules DefH , UcutH and ConUcutH are the hypersequent counter-
parts of the rules in Example 1. Let G,H be two arguments, where Supp(H) = {∆1, . . . ,∆m}. We
also assume that ∆j 6= ∅ for DefH , ∅ 6= ∆′j ⊆ ∆j for UcutH , and

⋃m
i=1 ∆i 6= ∅ for ConUcutH .

G ⇒ Conc(G) ⊃ ¬
∧

∆j H
H

DefH

G ⇒ Conc(G)↔ ¬
∧

∆′j H

H
UcutH

⇒ ¬
∧⋃m

i=1 ∆i H
H

ConUcutH

The notion of attack between hypersequents is the same as in Def. 3, except that sequents are
replaced by hypersequents and the sequent calculus C is replaced by a hypersequent calculus H.
Now, a hypersequent-based argumentation framework can be defined in a similar way as that of
a sequent-based argumentation framework (cf. Def. 4).

Definition 8. A hypersequent-based argumentation framework for a set of formulae S based on a
logic L = 〈L,`〉 and a set AR of hypersequent elimination rules, is a pair AFL(S) = 〈ArgL(S),A〉,
where A ⊆ ArgL(S)×ArgL(S) and (a1, a2) ∈ A iff there is an R ∈ AR such that a1 R-attacks a2.

Given a hypersequent-based argumentation framework AFL(S), Dung-style semantics are de-
fined in an equivalent way to those in Def. 5.

Example 7. Let AFRM(S) be a hypersequent-based argumentation framework for S = {p, q,¬p∨
¬q}, based on RM, with UcutH as the sole attack rule. From the axioms p ⇒ p and q ⇒ q, by
the Mingle Rule [Mi] (see Fig. 1) the sequent p, q ⇒ p, q can be derived in GRM and by the
Splitting Rule [Sp] the hypersequent p⇒ q | q ⇒ p is derivable in GRM as well. The hypersequent
p, q ⇒ p, q is UcutH -attacked by the axiom ¬p∨¬q ⇒ ¬p∨¬q, but the hypersequent p⇒ q | q ⇒ p
is not UcutH -attacked by this axiom. However, both hypersequents are UcutH -attacked by the
hypersequents p,¬p ∨ ¬q ⇒ ¬q and q,¬p ∨ ¬q ⇒ ¬p.

Definition 9. Given a hypersequent-based argumentation framework AFL(S), the following
entailment relations can be defined as in Definition 6: S |∼∩H,sem φ (S |∼∪H,sem φ) iff for every
(some) extension E ∈ Extsem(AFL(S)) there is an argument H ∈ E such that Conc(H) = φ and⋃
Supp(H) ⊆ S. The subscript H is omitted when this is clear from the context.

5 Discussion of Some Properties

In this section we consider some useful properties of hypersequent-based argumentation. We begin
by showing that in some cases this kind of argumentation overcomes a shortcoming of some other
frameworks (including sequent-based ones) that under some completeness-based semantics (Def. 5)
extensions may not always be consistent [2, 15].

Example 8 (Based on Example 2 in [2]). Let AFCL(S) = 〈ArgCL(S),A〉, where S = {p, q,¬p ∨
¬q, t} and the attack rules are Def and/or Ucut. The following sequents are in ArgCL(S):

a1 = t⇒ t a2 = p⇒ p a3 = q ⇒ q a4 = ¬p ∨ ¬q ⇒ ¬p ∨ ¬q
a5 = p⇒ ¬((¬p ∨ ¬q) ∧ q) a6 = q ⇒ ¬((¬p ∨ ¬q) ∧ p)
a7 = p, q ⇒ p ∧ q a8 = ¬p ∨ ¬q, q ⇒ ¬p a9 = ¬p ∨ ¬q, p⇒ ¬q

It can be shown that E = {a1, a2, a3, a4, a5, a6} is admissible in AFCL(S), for either of the attack
rules Def or Ucut. However, Concs(E) is inconsistent.

7



a1

a2a5

a3a6

a7 a4

a8

a9

a10 a12 a11

Figure 2: Part of the hypersequent-based argumentation graph for S = {p, q,¬p ∨ ¬q, t}, with
defeat as attack rule. The dashed graph is part of the ordinary sequent-based graph, the solid
nodes and arrows become available when generalizing to hypersequents.

Next, we show that the problem of the last example may be avoided by using a hypersequent-
based framework.10

Example 9 (Example 8, continued). Let AF ′L(S) =
〈
Arg′L(S),A′

〉
be a hypersequent-based

argumentation framework (Def. 8) for L ∈ {CL,RM}, the attack rules DefH and UcutH , and S as
in Ex. 8. With the possibility of splitting components, we get Arg′CL(S) ⊇ ArgCL(S)∪{a10, a11, a12}
where:

a10 = ¬p ∨ ¬q ⇒ ¬p | q ⇒ ¬p a11 = ¬p ∨ ¬q ⇒ ¬q | p⇒ ¬q
a12 = p⇒ p ∧ q | q ⇒ p ∧ q

See Fig. 2 for a graphical representation of the situation in CL (the graph for RM is similar). The
dashed graph (nodes and arrows) represents Ex. 8, the ordinary sequent-based argumentation
graph. When generalizing to hypersequents, the three solid nodes and all solid arrows are added.

The following three sets of arguments are part of different complete extensions: E1 = {a1,
a2, a3, a5, a6, a7, a12}, E2 = {a1, a3, a4, a6, a8, a10} and E3 = {a1, a2, a4, a5, a9, a11}. Furthermore,
although E = {a1, a2, a3, a4, a5, a6} is conflict-free, a2, for example, is attacked by a10. In order to
defend a2, E must be extended with a hypersequent like a7, a9, a11 or a12, however, then the new
extension is not conflict-free anymore. Hence E is not part of a complete extension. Addition-
ally, each extension contains a1, therefore, the system AF ′L(S) does not only avoid inconsistent
extensions, it provides extensions from which the free arguments follow.11

In the next subsection it will be shown, among others, that the outcome of the last example is
not a coincidence.

5.1 Rationality Postulates

In this section we show that, for a hypersequent-based argumentation framework with the attack
rules DefH and UcutH , and core logic RM, the logic-based rationality postulates in [1] hold.

10Intuitively, this is so due to the possibility of splitting hypersequents into different components. A formal
justification will be given in the next subsection.

11Where free arguments are those arguments that are based only on premises that are not involved in minimally
inconsistent subsets of S (see Definition 10).
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Definition 10. Let L = 〈L,`〉 be a logic and let T be a set of L-formulae, where L contains the
connectives ¬ and ∧.

• The closure of T is denoted by CNL(T ) (thus, CNL(T ) = {φ | T ` φ}).

• T is consistent (for `), if there are no formulae φ1, . . . , φn ∈ T such that ` ¬
∧n
i=1 φi.

12

• A subset C of T is a minimal conflict of T (w.r.t. `), if C is inconsistent and for any c ∈ C,
the set C \ {c} is consistent. We denote by Free(T ) the set of formulae in T that are not
part of any minimal conflict of T .

LetAFL(S) = 〈ArgL(S),A〉 be a hypersequent-based argumentation framework and letH,H′ ∈
ArgL(S) such that H = Γ1 ⇒ φ1 | . . . | Γn ⇒ φn and H′ = Γ′1 ⇒ φ′1 | . . . | Γ′m ⇒ φ′m. Then H′ is
a sub-argument of H if for each i ∈ {1, . . . ,m} there is a j ∈ {1, . . . , n} such that Γ′i ⊆ Γj . The
set of sub-arguments of H is denoted by Sub(H).

Definition 11. Let AFL(S) = 〈ArgL(S),A〉 be an argumentation framework for the logic L =
〈L,`〉, the set S of L-formulae and a fixed (set of) semantics sem. We say that AFL(S) has the
properties below (for sem), if they are satisfied for every E ∈ Extsem(AFL(S)).

• closure of extensions: Concs(E) = CNL(Concs(E)).

• closure under sub-arguments: if H ∈ E then Sub(H) ⊆ E .

• consistency: Concs(E) is consistent.

• exhaustiveness: For every H ∈ ArgL(S) such that
⋃
Supp(H) ∪ {Conc(H)} ⊆ Concs(E),

H ∈ E .

• free precedence: ArgL(Free(S)) ⊆ E .

Note 1. For proving the above postulates, we shall use (sometimes implicitly) the following ad-
missible rules of GRM:
• Transitivity: if G1 | Γ ⇒ φ1 | H1 and G2 | φ1 ⇒ φ2 | H2 are derivable, then G1 | G2 | Γ ⇒
φ2 | H1 | H2 is derivable.

• From G | Γ⇒ φ ⊃ ψ,∆ | H derive G | Γ, φ⇒ ψ,∆ | H.
• From G | ∆⇒ φ | H derive G | ⇒ ¬φ ⊃ ¬

∧
∆ | H.

• For any Γ′ ⊆ Γ, if G | ⇒ φ ⊃ ¬
∧

Γ′ | H is derivable then G | ⇒ φ ⊃ ¬
∧

Γ | H is derivable.
• Γ1 ⇒ φ1 | . . . | Γn ⇒ φn is derivable iff Γ1, . . . ,Γn ⇒ φ1, . . . , φn is derivable.
• φ1 ∨ . . . ∨ φn ⇒ φ1 | . . . | φ1 ∨ . . . ∨ φn ⇒ φn is derivable.

Theorem 2. Any argumentation framework AFRM(S) with the attack relation DefH or UcutH ,
and under any completeness-based semantics, satisfies closure of extensions, closure under sub-
arguments, consistency and exhaustiveness. Moreover, when ConUcutH is part of the attack rules,
it also satisfies free precedence.

Proof. Let AFRM(S) = 〈ArgRM(S),A〉 be an argumentation framework, with the attack rules
DefH and/or UcutH and let E be a complete extension of AFRM(S).

Sub-argument closure: For both DefH and UcutH it can be shown that any attacker of
H′ ∈ Sub(H) is also an attacker of H. If H ∈ E , for any completeness-based extension E there is
a G ∈ E that defends H against this attack. Thus E defends H′ as well. Therefore, H′ ∈ E .

Closure of extensions: Showing that Concs(E) ⊆ CNRM(Concs(E)) is trivial. For the other
direction, assume that φ ∈ CNRM(Concs(E)). Then there are arguments H1, . . . ,Hn ∈ E such that
Hi = Γi1 ⇒ ψi1 | . . . | Γimi

⇒ ψimi
, with φi = ψi1 ∨ . . . ∨ ψimi

and φ1, . . . , φn `RM φ.
It can be shown that the argument H′ =

∧n
k=1

∧mk

j=1

∧
Γkj ⇒ φ1 ∧ . . .∧φn is derivable in GRM.

By transitivity and splitting we get thatH = Γ1
1 ⇒ φ | . . . | Γ1

m1
⇒ φ | . . . | Γn1 ⇒ φ | . . . | Γnmn

⇒ φ

12Note that if T is consistent, then so are CNL(T ) and T ′ for every T ′ ⊆ T . If T is inconsistent, then so is every
superset of T .
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is provable in GRM. For both attack rules DefH and UcutH , any attacker of H is an attacker of
one of the arguments H1, . . . ,Hn. Hence H ∈ E , and so φ ∈ Concs(E).

Consistency: Assume, towards a contradiction, that Concs(E) is not consistent. Then
there are φ1, . . . , φn ∈ Concs(E) such that ⇒ ¬

∧n
j=1 φj is derivable in GRM. Let ψ = φ1 ∧

. . . ∧ φn. Furthermore, like the proof of closure, there are arguments H1, . . . ,Hn ∈ E , such
that Hi = Γi1 ⇒ ψi1 | . . . | Γimi

⇒ ψimi
and φi = ψi1 ∨ . . . ∨ ψimi

. From these, arguments
H′i = Γi1, . . . ,Γ

i
mi
⇒ φi, for each i ∈ {1, . . . , n}, can be derived. By applying (⇒∧) to the H′i’s,

we drive Γ1
1, . . . ,Γ

1
m1
, . . . ,Γn1 , . . . ,Γ

n
mn
⇒ ψ.

Then, for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,mj}, ¬ψ,Γ1
1, . . . ,Γ

1
m1
, . . . ,Γn1 , . . . ,Γ

n
mn
⇒ ¬

∧
Γjk

is derivable, where Γjk is taken out of Γ1
1, . . . ,Γ

1
m1
, . . . ,Γn1 , . . . ,Γ

n
mn

. By transitivity from ⇒ ¬ψ
and splitting, G = Γ1

1 ⇒ ¬
∧

Γjk | . . . | Γ1
m1
⇒ ¬

∧
Γjk | . . . | Γn1 ⇒ ¬

∧
Γjk | . . . | Γnmn

⇒ ¬
∧

Γjk is
derivable. Note that, for both attack rules DefH and UcutH , any attacker of G is an attacker of
one of the arguments H1, . . . ,Hn, therefore G ∈ E . However, G attacks (defeats/undercuts) Hj , a
contradiction to the assumption that E is conflict-free. Thus Concs(E) is consistent.

Exhaustiveness: Let H ∈ ArgRM(S) be an argument such that
⋃

Supp(H) ∪ {Conc(H)} ⊆
Concs(E). It easily follows that E ∪ {H} is conflict-free. Assume that some G = ∆1 ⇒ ψ1 | . . . |
∆n ⇒ ψn ∈ ArgRM(S) defeats H (the case for undercut is similar and left to the reader). Then
⇒ Conc(G) ⊃ ¬

∧
Γ is derivable in GRM, for some Γ ∈ Supp(H). Let Γ = {γ1, . . . , γm}. Then

there are H1, . . . ,Hm ∈ E such that Conc(Hj) = γj and
⋃

Supp(Hj) = {δj1, . . . δ
j
kj
} (1 ≤ j ≤ m).

By Theorem 1, δj1, . . . , δ
j
kj
`RM γj , thus δ11 , . . . , δ

1
k1
, . . . , δm1 , . . . , δ

m
km
`RM γ1∧ . . .∧γm, and so ¬

∧
Γ,

δ11 , . . . , δ
1
k1
, . . . , δm1 , . . . , δ

m
km−1

`RM ¬δmkm .

Now, by transitivity from Conc(G) ⇒ ¬
∧

Γ, Theorem 1, and splitting, we have that G′ =
∆1 ⇒ ¬δmkm | . . . | ∆m ⇒ ¬δmkm | δ

1
1 ⇒ ¬δmkm | . . . | δ

m
km−1

⇒ ¬δmkm ∈ ArgRM(S). But then G′
defeats Hm ∈ E , thus there is some H∗ ∈ E which defeats G′. This attack has to be on some ∆i,
i ∈ {1, . . . , n}, otherwise E would not be conflict-free. Hence H∗ defeats G as well.

Since, by assumption, E is complete, E ∪ {H} is conflict-free and E defends H, it follows that
H ∈ E .

Free precedence: Suppose that ConUcutH is among the attack rules in AFRM(S) as well.
It can be shown that DefH , UcutH and ConUcutH are conflict-dependent in the sense of [1], that
is: if G,H ∈ ArgRM(S) such that G attacks H, then

⋃
Supp(G) ∪

⋃
Supp(H) is inconsistent.

Assume that some G ∈ ArgRM(S) attacks an argument H ∈ ArgRM(Free(S)). Since each of the
considered attack rules is conflict-dependent,

⋃
Supp(H) ∪

⋃
Supp(G) is inconsistent. However,⋃

Supp(H) ⊆ Free(S), thus G has an inconsistent support set. Then there is an argument ⇒
¬
∧
Supp(G) ∈ E that attacks G via the ConUcutH rule. Since any attacker of H is counter-

attacked by E , it follows that E defends H, and since E is complete, H ∈ E .

We have shown that AFRM(S), for the given attack rules, satisfies the five postulates under
complete semantics. From this it follows (see, e.g., [1, Prop. 26]) that AFRM(S) satisfies the five
postulates also under grounded, preferred and stables semantics.

Consider the following weakening of the definition of sub-arguments:

Definition 12. We say that H′ is a weak sub-argument of H, if
⋃
Supp(H′) ⊆

⋃
Supp(H). We

denote by WSub(H) the set of all weak sub-arguments of H.

Clearly, any sub-argument of H is in particular a weak sub-argument of H. Interestingly, as
the next proposition shows, closure of extensions and exhaustiveness imply closure under weak
sub-arguments (and so closure under sub-argument).

Proposition 1. Any argumentation framework AFRM(S) that satisfies closure of extensions and
exhaustiveness also satisfies closure under weak sub-arguments.

Proof. Let AFRM(S) be a hypersequent-based argumentation framework for the core logic RM and
set of formulas S that satisfies closure of extensions and exhaustiveness. Suppose that H ∈ E for
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some E ∈ Extsem(AFRM(S)), and let H′ ∈ WSub(H). Then
⋃

Supp(H′) ⊆
⋃
Supp(H). Note that

for each φ ∈
⋃
Supp(H), φ ⇒ φ ∈ E (since every attacker of φ ⇒ φ is also an attacker of H and

E is complete). Thus (†)
⋃
Supp(H′) ⊆ Concs(E). Furthermore, since Supp(H′) `RM Conc(H′), by

the monotonicity of ` also Supp(H) `RM Conc(H′) and by closure (‡) Conc(H′) ∈ Concs(E). Thus
H′ ∈ E by exhaustiveness in view of (†) and (‡).

Note 2. Consider a hypersequent variant LKH of the sequent calculus LK for classical propositional
logic. This calculus would allow for internal weakening in addition to all the rules of GRM. Then
all of the above proofs for the postulates hold also for classical logic with the calculus LKH .

5.2 Crash-resistance and Non-Interference

Two additional postulates were introduced in [14] concerning crash-resistance, the problem that a
system collapses when it is based on inconsistent information. For defining these postulates, some
definitions and notations are necessary.

Let AFL(S) = 〈ArgL(S),A〉 be an argumentation framework for the logic L = 〈L,`〉 and a set
S of L-formulae.

• We denote by Atoms(S) the set of atoms that occur in the formulae in S and by Atoms(L)
the set of all the atoms of the language.

• Sets S, T of formulae are syntactically disjoint , if Atoms(S) ∩ Atoms(T ) = ∅.

Definition 13. Let |∼ be an entailment relation for L. A set S ′ of L-formulae is called contami-
nating (with respect to |∼), if for any set S∗ ⊆ L such that S ′ and S∗ are syntactically disjoint,
and for every L-formula φ, it holds that S ′ |∼ φ if and only if S ′ ∪ S∗ |∼ φ.

Definition 14. Let L be a propositional language and |∼ an entailment relation for L. Then |∼
satisfies

• non-interference: if and only if for every syntactically disjoint sets S1, S2 of L-formulae and
any L-formula φ such that Atoms(φ) ⊆ Atoms(S1), S1 |∼ φ if and only if S1 ∪ S2 |∼ φ;

• crash-resistance: if and only if there is no set S of L-formulae that is contaminating w.r.t.
|∼.

For proving the above postulates, we need the next lemma. Its proof is partially based on [5,
Lemma 1] and [16, Lemma 15], but omitted due to space restrictions.

Lemma 1. Let AFRM(S) be a hypersequent-based argumentation framework for S (Def. 8) whose
core logic is RM. The following are equivalent:
(a) E ∈ Extprf(AFRM(S));
(b) E ∈ Extstb(AFRM(S));
(c) E = ArgRM(S ′), where S ′ is a ⊆-maximally consistent subset of S.

Theorem 3. Let AFRM(S) be a hypersequent-based argumentation framework for the logic RM,
the attack rules DefH and/or UcutH , and a set of formulae S. Let also π ∈ {∩,∪}, and sem
a completeness-based semantics. Then the induced entailment |∼πH,sem (Def. 9) satisfies non-
interference.

Proof outline. The structure of the proof is roughly based on the proofs in [30]. In what follows
we abbreviate |∼πH,sem by |∼π.

Let AFRM(S) be some hypersequent-based argumentation framework for the logic RM, with
the attack rules DefH and/or UcutH and a set of formulae S. Consider two syntactically disjoint
sets S1,S2 ⊆ S and let S ′ = S1 ∪ S2. For any S ⊆ ArgRM(S), let DAFRM(S)(S) = {H ∈ ArgRM(S) |
S defends H}. Then, by Lemma 1 and the fact that RM satisfies the basic relevance criterion [9],
the following points can be shown for complete, preferred and stable semantics (proofs are omitted
due to space restrictions):
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1. if E ∈ Extsem(AFRM(S ′)), then E ∩ArgRM(S1) ∈ Extsem(AFRM(S1));
2. if E1 ∈ Extsem(AFRM(S1)) and E2 ∈ Extsem(AFRM(S2)), thenDAFRM(S′)(E1∪E2) ∈ Extsem(AFRM(S ′)).

Let φ be a formula with Atoms(φ) ⊆ Atoms(S1). We show that S1 |∼∩ φ if and only if S ′ |∼∩ φ (the
proof for |∼∪ is left to the reader).
⇒ Assume that S1 |∼∩φ but S ′ |6∼∩φ. Thus, there is some E ∈ Extsem(AFRM(S ′)), such that

there is no argument H ∈ E with Conc(H) = φ. By Item 1 above E ∩ ArgRM(S1) ∈
Extsem(AFRM(S1)), a contradiction to S1 |∼∩φ.

⇐ Assume that S ′ |∼∩φ but S1 |6∼∩φ. Thus, there is some E ∈ Extsem(AFRM(S1)) such that
there is no argument H ∈ E with Conc(H) = φ. By the basic relevance criterion [3], if
E ′ ∈ Extsem(AFRM(S2)) (in [16] it is shown that there is at least one such extension), there is
no argument H ∈ E ′ with Conc(H) = φ either. Thus, by Item 2 above, DAFRM(S′)(E ∪ E ′) ∈
Extsem(AFRM(S ′)). By definition of DAFRM(S′), there is no argument H ∈ DAFRM(S′)(E ∪ E ′)
with Conc(H) = φ, a contradiction to S ′ |∼∩φ.

It follows that |∼∪H,sem and |∼∩H,sem, for sem ∈ {gr, cmp, prf, stb}, satisfy non-interference.

Theorem 4. Let AFRM(S) be a hypersequent-based argumentation framework for the logic RM,
the attack rules DefH and/or UcutH , and a set of formulae S. Let also π ∈ {∩,∪}, and sem a
completeness-based semantics. Then |∼πH,sem satisfies crash-resistance.

For the proof, we recall the following notion from [14]:

• Let AT be a set of atoms. We denote by S|AT the set of formulae in S that contain only
atoms from AT. For a set F of sets of L-formulae, we denote: F|AT = {S|AT | S ∈ F}.

• According to [14], a logic L = 〈L,`〉 is called non-trivial , if for every non-empty set AT ⊆
Atoms(L) there are sets S1,S2 of L-formulae such that Atoms(S1) = Atoms(S2) = AT but
CNL(S1)|AT 6= CNL(S2)|AT.

Proof sketch. By Thm. 3, for every sem ∈ {gr, cmp, prf, stb} the entailments |∼∩H,sem and |∼∪H,sem
satisfy non-interference. Thus, since RM is non-trivial, crash-resistance follows from [14, Thm. 1].

Note 3. The basic relevance criterion [3] is a primary property of RM, used in the proof of Thm. 3
for showing non-interference (and so also for obtaining crash resistance in the proof of Thm. 4).
We note that, although classical logic does not satisfy the basic relevance criterion, it is a uniform
logic (i.e., for every two sets of formulae S, S ′ and a formula φ, if S,S ′ ` φ and S ′ is a `-consistent
theory that is syntactically disjoint from S ∪ {φ}, then S ` φ). By assuming that ConUcutH is
part of the attack rules, Items 1 and 2 in the proof of Thm. 3 still hold. In the ⇐ direction of
the proof the use of the basic relevance criterion can be replaced by the uniformity of the core
logic and the fact that no arguments with inconsistent support set will be part of any extension.
Hence, the proofs of Thms. 3 and 4 can be adjusted also for the case that, e.g., classical logic is
the core logic.

6 Conclusion

Hypersequent-based argumentation, like sequent-based argumentation, avoids some limitations of
other approaches to logic-based argumentation (e.g., [12]), where the support set of an argument
has to be consistent and minimal. Furthermore, it incorporates any logic with a corresponding
sound and complete (hyper)sequent calculus, and allows a great flexibility in the specification of
the attack rules.

In this paper we have examined hypersequent frameworks that are based on the logic RM and
with defeat and/or undercut as the attack rule. It was shown that such frameworks satisfy the
logic-based rationality postulates from [1, 13] and non-interference and crash-resistance from [14].
Moreover, a problem raised in [15] (and further discussed in [2]), in which complete extensions
may not be consistent, is avoided.
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A comparison to related literature has to be postponed. However, it is worth noting that
our non-interference result is more general than the one in [30], where this is only proven for
frameworks under complete semantics.

Future research directions include the extension of dynamic proof theory [6] from sequent-
based frameworks to hypersequent-based ones. Moreover, we plan to investigate the integra-
tion of priorities among arguments and the use of assumptions, such as default assumptions [20]
and assumptions taken in adaptive logics [10, 28], for further extending the expressive power of
hypersequent-based argumentation.
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