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Abstract

In this paper we present an agent-based model (ABM) of scientific inquiry aimed at investi-
gating how different social networks impact the efficiency of scientists in acquiring knowledge.
The model is an improved variant of the ABM introduced in [3], which is based on abstract
argumentation frameworks. The current model employs a more refined notion of social net-
works and a more realistic representation of knowledge acquisition than the previous variant.
Moreover, it includes two criteria of success: a monist and a pluralist one, reflecting different
desiderata of scientific inquiry. Our findings suggest that, given a reasonable ratio between
research time and time spent on communication, increasing the degree of connectedness of
the social network tends to improve the efficiency of scientists.

1 Introduction

Agent-based models (ABMs) have in recent years been increasingly utilized as a method for tack-
ling socio-epistemic aspects of scientific inquiry [6, 18, 21, 23, 24]. The primary value of this
approach is that it allows us to tackle questions that are difficult to answer with qualitative meth-
ods, such as historical case studies. One such question concerns the impact of different degrees
and structures of information flow among scientists on their efficiency in acquiring knowledge.
Zollman’s pioneering work in this domain [23, 24] suggested that a high degree of connectedness
of a social network may be epistemically harmful, and that there is a trade-off between the success
of agents and the time they need to reach a consensus. Even though it has been shown in [15] that
this result, dubbed as “Zollman effect”, does not hold for a large portion of the relevant parameter
space, structurally different ABMs have come to similar conclusions [9, 10].

The highly idealized nature of these ABMs makes it difficult to assess how relevant their
findings are for actual scientific inquiry [15]. On the one hand, idealization and abstraction are
necessary for simulations that aim at representing complex real world phenomena [14]. On the
other hand, unless we include the most important ‘difference making’ factors figuring in the target
phenomenon, the model might not represent any realistic scenario. Instead, it may represent
only a logical possibility, uninformative about the real world.1 Since due to their high degree
of idealization such models operate at a significant representational distance from their intended
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1Accordingly, we can distinguish between models that provide how actually and how possibly explanations.
While some have suggested that modeling a possibility is epistemically valuable [11], others have argued that if a
model merely captures a possibility, it is epistemically and pragmatically idle [19]; instead, the presented possibility
has to be understood within a specified context, which makes it relevant for real world phenomena.
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target, we are faced with the methodological difficulty to judge their adequacy and epistemic
merit. What we can do is to compare models with the same intended target that differ in various
important respects, such as in the way they structure the phenomenon, in the way some of its
elements are represented, in their degree of abstraction and idealization, etc. The possible gain may
be that in virtue of this we are able to identify results that are robust under different modeling
choices, and, based on that, to identify causes and explanatory relevant properties underlying
these commonalities. Similarly, if specific types of models give rise to different outcomes, we may
sharpen our understanding of their possible target phenomena and how they apply to them. For
example, we may be able to identify distinct sub-classes of phenomena to which the different types
of models apply.

The ABM presented in this paper has the same intended target phenomenon as the ones
presented in [23, 24]. Nevertheless, the representation of social networks, the content of the
exchanged information, and the behavior of agents is different, which raises the question whether
the “Zollman effect” also occurs in our model. As will be demonstrated, it does not. Given the
differences between our models, this result may not be surprising. Nevertheless, it suggests that
further investigation is needed to determine to which target phenomena the results of each model
apply.

Our model is based on a recently developed argumentative ABM of scientific inquiry (AABMSI)
[3]. It represents scientific interaction as argumentative in nature. This means that instead of a
simple information flow that lacks critical assessment, in AABMSI agents may refute previously
accepted or new information in view of counterarguments. Second, information about a given sci-
entific theory is represented as consisting of a set of arguments (rather than being fully aggregated
in a single value, representing one’s credence in the given theory [23, 24] or the epistemic success of
the theory [9, 10]). As a result, information sharing is represented as concerning particular parts
of the given scientific theory, rather than an aggregated attitude about the whole theory. Third,
receiving criticism triggers a search for defense of the given attacked argument. Fourth, the model
takes into account that sharing information costs time and hence, that there is a trade-off between
time spent on research and time spent on interaction.

In this paper we present an improved and more encompassing variant of AABMSI, aimed
at examining the effects of different social networks on the efficiency of scientific inquiry. The
model represents a situation in which scientists pursue different scientific theories, with the aim of
determining which one is the best, and where they exchange arguments regarding their pursued
theories. Compared to the model presented in [3], the current model introduces a number of
improvements: 1) it employs the notion of social networks that is typically used in other ABMs
of science, such as the complete graph, the wheel and the cycle [23, 24, 9, 10] – this allows for the
representation of an increase in information sharing proportional to the population size, which is
absent from AABMSI; 2) the heuristic behavior of agents is represented in a more adequate way;
3) an additional criterion of success has been introduced in order to examine the robustness of
the results under different standards relevant in scientific practice; 4) the time cost of learning
is now proportional to the amount of new information received by the agent; 5) the model has
been computationally improved, allowing for statistical analysis of the data and for more reliable
results.

Our findings suggest that a higher degree of connectedness leads to a more efficient inquiry,
given a reasonable ratio between research time and time spent on communication. While our
ABM is still too idealized to draw normative conclusions concerning scientific inquiry that would
be useful, for instance, to policy makers,2 it represents a step further in this direction.

The paper is structured as follows. In Sec. 2 we explicate the main features of our ABM. In
Sec. 3 we present the main results of the simulations. In Sec. 4 we compare our model with an
argumentation-based ABM introduced in [8], as well as with other ABMs of scientific interaction.
We conclude the paper in Sec. 5 by suggesting further enhancements of our model and future
research avenues.

2To this end, one of the tasks for future research is the empirical calibration of the parameters used in the model,
as pointed out in [13].
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2 The Model

Agents in our model represent scientists who inquire into a number of rivaling theories in a given
scientific domain. Theories are represented by sets of arguments which scientists can discover
and investigate. This is modeled in terms of an argumentative landscape where scientists can
investigate arguments by spending time on them, which allows them to discover other arguments
or argumentative attacks between arguments of different theories. In certain intervals scientists
evaluate theories on the basis of their knowledge about the argumentative landscape and decide
which theory to pursue further. Additionally, scientists are situated in communication networks.
By communicating with other scientists they enhance their knowledge about the argumentative
landscape which may help them to make more informed evaluations.

In the remainder of this section we describe the main components of our model in more detail:
the underlying argumentative landscape, the behavior of agents and the notion of social networks.3

2.1 The argumentative landscape

An abstract argumentation framework, as introduced by Dung [7], is a directed graph AF =
〈A, 〉 where A is a set of abstract entities called arguments and  is an attack relation between
arguments. Where a, b ∈ A, a attacks b if a b. A set of arguments S is conflict-free if there are
no a, b ∈ S such that a b.

For our purposes it is useful to add another relation between arguments, the discovery relation
↪→. It represents possible paths scientists can take to discover arguments:4 if a ↪→ b, then b can
be discovered by the scientists if a has been previously discovered.

A theory is represented by a conflict-free set of arguments connected in a tree-like graph by
discovery relations. Argumentative attacks exist only between arguments of different theories.
Formally, an argumentative landscape is a triple L = 〈A, , ↪→〉 where the set of arguments A
is partitioned into m theories 〈A1, . . . ,Am〉 such that for each i ∈ {1, . . . ,m} the theory Ti =
〈Ai, ai, ↪→〉 is a tree with root ai ∈ Ai and

 ⊆
⋃

1≤i,j≤m
i 6=j

(Ai ×Aj) and ↪→ ⊆
⋃

1≤i≤m

(Ai ×Ai).

This definition of the attack relation  ensures that each theory is conflict-free and that attacks
only occur between members of different theories.

At the beginning of the simulation only the roots of each theory (representing a basic under-
lying hypothesis) are visible to the agents. During the simulation the agents gradually discover
arguments and attacks between them (see also Section 2.2). Each argument a has a degree of
exploration: expl(a) ∈ {0, . . . , 6} where 0 means that the argument has not been discovered and 6
means that the argument has been fully researched and it cannot be explored further. By spending
time on an argument a, a scientist increases its degree of exploration. The higher the degree of
exploration of a, the higher is the likelihood that the connected arguments will become visible.
This concerns both arguments connected to a via the discovery relation in the same theory and
arguments that attack a or that are being attacked by a. If expl(a) = 0 [resp. expl(a) = 6] no [resp.
all] relation[s] from a to other arguments have been discovered.

Agents only have subjective knowledge of the landscape, which consists of arguments, their
respective degrees of exploration, and attacks. During the simulation agents gain knowledge, on
the one hand, by exploring the landscape, and on the other hand, by communicating with other
agents. This way two agents may have different knowledge about the degree of exploration of an
argument or about discovered relations. See also Section 2.3.

3Our ABM is created in NetLogo [22]. The source code is available at: https://github.com/g4v4g4i/ArgABM/

tree/LORI-VI-2017.
4Other ways of discovering arguments and attacks (via social networks) are discussed below.

3

https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017
https://github.com/g4v4g4i/ArgABM/tree/LORI-VI-2017


g

e a c

f b d

theory defended degree of def.
T1 = {e, f} (white) {f} 1
T2 = {a, b, g} (gray) {} 0

T3 = {c, d} (dark gray) {} 0

Figure 1: Argumentation Framework 1

2.2 Basic behavior of agents

Our model is round based. Each round every agent performs actions that are among the following:

1. the agent investigates the argument a she is currently situated at (i.e. she increases expl(a))
and while doing so she gradually reveals outgoing discovery relations as well as attacks from
and to a;

2. the agent explores her current branch of the theory further by moving along a discovery
relation to a neighboring argument (that she can see);

3. the agent leaves her current theory and moves to an argument of a rivaling theory (that she
can see).

Every round each agent decides (based on a certain probability) whether to stay on her current
argument (option 1) or to move to a new argument in her direct neighborhood (relative to the
discovery relation, option 2). If she has reached a leaf of her branch, which is fully explored (i.e.,
expl(a) = 6), she backtracks on this branch to find an argument that is not fully explored. In case
this fails, she moves to another not fully explored argument in the same theory.

Additionally, every 5 rounds agents consider whether they are still working on the theory they
consider the best (with respect to their current subjective knowledge of the landscape). Depending
on this decision, they continue with 1. and 2., or move to an alternative theory and start to explore
that one (3.). Their decision is based on an evaluation of the degree of defensibility of a theory.

The degree of defensibility of a theory is the number of defended arguments in this theory,
where –informally speaking– an argument a is defended in the theory if it is not attacked or if
each attacker b from another theory is itself attacked by some defended argument c in the current
theory.

Let us give a more precise formal definition. First, we call a subset of arguments A of a given
theory T admissible iff for each attacker b of some a in A there is an a′ in A that attacks b (we
say that a′ defends a from the attack by b). Since every theory is conflict-free, it can easily be
shown that for each theory T there is a unique maximally admissible subset of T (with respect to
set inclusion). An argument a in T is said to be defended in T iff it is a member of this maximally
admissible subset of T .5 The degree of defensibility of T is equal to the number of defended
arguments in T .

Example 1 Fig. 1 depicts a situation with three theories as it might occur from the perspective
of a given agent: T1 consisting of arguments e and f (white nodes), T2 consisting of arguments
a, b and g (gray nodes), and T3 consisting of arguments c and d (dark gray nodes). The arrows
represent attacks, we omit discovery relations. We are now interested in the degrees of defensibility
our agent would ascribe to the given theories. The table shows which arguments are defended in
each theory and their corresponding degree of defensibility. The only defended argument in this
situation is f in theory 1. Note for instance that in T3 the argument d is not defended since no
argument in T3 is able to defend it from the attack by b. Although the argument f in T1 attacks

5Given that theories in our model are conflict-free, our notion of admissibility is actually the same as the one
introduced in [7]. In Dung’s terminology, our sets of defended arguments correspond to preferred extension (which
are exactly the maximally admissible sets), except that we determine these sets relative to given theories.
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theory defended degree of def.
T1 = {e, f} (white) {} 0
T2 = {a, b, g} (gray) {a, b, g} 3

T3 = {c, d} (dark gray) {} 0

Figure 2: Argumentation Framework 2

b, it doesn’t count as a defender of d for theory T3 when determining the defended arguments in
T3 since in our account a theory is supposed to defend itself.

Fig. 2 depicts the situation after an attack from a to f has been discovered. Consider theory
T2. In this situation a defends b from the attack by f , b defends a from the attack by d, a defends
g from the attack by e and g defends a from the attack by c. Hence, all arguments are defended
resulting in a degree of defensibility of 3.

A scientist decides to work on another theory T ′ instead of her current theory T if the degree
of defensibility of T ′ surpasses the one of T by a certain margin. We represent the objectively
best theory as a fully defended one.

Moreover, agents are equipped with heuristic abilities. An agent that encounters an attack
from an argument b on the argument a, she is currently working on, will try to find a defense for
this argument. For this she will consider all the arguments in her subjective knowledge that belong
to the same theory as a. If there is an argument a′ among these that can potentially defend a from
the attack, she will begin to investigate it. That a′ potentially defends a from b means that there
is an attack from a′ to b but this attack has not yet been added to the subjective representation of
the landscape of our agent (e.g., since expl(a′) is too low or since it has not been communicated to
her). This means that agents are equipped with ‘professional hunches’ which help them to tackle
problems in their theories.6

2.3 Social networks

Besides discovering the argumentative landscape by exploring it on her own (see Section 2.2), an
agent can share information about the landscape with other agents.

At the start of a simulation agents are divided into local collaborative networks, each consisting
of exactly five individuals working on the same theory. During the simulation each agent gathers
information (i.e., the degree of exploration of arguments, discovery and attack relations) on her
own. Agents of the same collaborative network have the same subjective knowledge of the land-
scape since whenever an agent learns something new, this is communicated with the other agents
in the same collaborative group.

Additionally, the collaborative groups form a community network. These have one of the
following three structures: a cycle, in which each collaborative group is connected to exactly two
other groups, a wheel which is similar to the cycle, except that a unique group is connected to
every other group, and a complete graph where each group is connected to all other groups (Fig. 3).
Every five rounds, randomly chosen representative agents of the collaborative groups communicate
along the communication channels of the community network. The different network structures
allow us to represent varying degrees of information flow in the scientific community, with the
cycle representing the lowest and the complete graph the highest degree of information sharing.7

Representative agents do not share their whole knowledge of the landscape with agents from
other collaborative networks. Instead, they share the knowledge they have obtained recently

6Such hunches are not considered when agents evaluate theories.
7In contrast to the current model, in AABMSI [3] network structures are generated probabilistically in specific

time intervals.
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Figure 3: A cycle, a wheel and a complete graph. Each node is a collaborative group, while the
edges represent communication channels.

by their own exploration of the landscape, which consists of the argument they are currently
at, its neighboring arguments connected via the discovery relation, their respective degrees of
exploration, and attacks to and from their current argument. One way of interpreting this limited
knowledge sharing is by considering this to be a situation where the agent writes a paper or gives
a presentation on her current research results.

An alternative interpretation of collaborative groups is that they represent one individual
working on 5 different arguments (papers, hypotheses, etc.) in a given theory. Whenever this
individual communicates with other individuals from the community network it exchanges the
information from the neighborhood of one of the 5 arguments she is currently engaged with.

Our model takes into account that information sharing and especially receiving information
is time costly: agents who receive information (the representative agents of each collaborative
network) are blocked from further exploration for a certain number of rounds. The costs of
information sharing are proportional to the amount of new information obtained.8

Finally, we distinguish two types of information sharing, characterizing two types of scientists.
A reliable agent shares all her recent discoveries, whereas a deceptive agent withholds the informa-
tion about attacks on her current theory. This way, agents receiving information from a deceptive
agent from theory T might come to a more favorable interpretation of T than if they would have
communicated with a reliable agent [4].

3 The main findings

We will now specify the parameters used in the simulations and then present our most significant
results.

3.1 Parameters used in simulations

We have run simulations with a landscape consisting of 3 theories. The landscape is created in
three steps: First, each theory is represented by a tree (as explained in Section 2.1) of depth 3 such
that each node has 4 children (except for the leaves) resulting in 85 arguments per theory. Second,
with a chance of 0.3, each argument gets randomly attacked by an argument from another theory.
Third, for every argument in theories T2 and T3 that attacks an argument in theory T1 and that
is not attacked by an argument from T1 we add an attack from some random argument in T1.
Thus, it is made sure that T1 is the objectively best theory and as such is fully defended from all
attacks. In this way we wish to represent a scenario in which theories that are rivals to the best
one are worse, though not completely problematic (as it would be the case with pseudo-scientific
theories).

Simulations were run 10.000 times for each of the scenarios with 10, 20, 30, 40, 70 and 100
agents. The scenarios are created by varying::

1. the community network: in the form of a cycle, a wheel and a complete graph;

8A representative agent is excluded from research for 1–4 rounds: she always pays the basic cost of information
sharing which is 1 round, and in addition, for every 2 fully explored arguments she will pay an additional round.
The cost of learning an attack is equivalent to learning one degree of exploration of an argument.
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2. two types of information sharing: reliable and deceptive.9

A simulation stops when one of the theories is completely explored. At this point all the agents
have one more chance to make their final evaluation and choose their preferred theory. We then
evaluate whether the agents have been successful according to the following criteria (where T1 is
the objectively best theory):

1. monist criterion, according to which a run is considered successful if, at the end of the run,
all agents have converged onto T1;

2. pluralist criterion, according to which a run is considered successful if, at the end of the run,
the number of agents working on T1 is not smaller than the number of agents working on
any of the other theories.

The monist criterion is the standard notion of success, often employed in other ABMs of
science, e.g. [23, 24]. The pluralist criterion, on the other hand, is motivated by the philosophical
conception of scientific pluralism, according to which a parallel existence of multiple theories in a
given scientific domain is considered epistemically and heuristically beneficial e.g. [5]. This means
that the convergence of all scientists onto the objectively best theory isn’t a primary epistemic
concern for pluralists. Rather, what matters is that the best theory is one of the most actively
researched theories.10

3.2 Results

In this section we describe the most important findings of the simulations.

Reliable vs. deceptive agents. With respect to both criteria of success, reliable agents are
clearly more successful than the deceptive ones (Fig. 4 and 5), while being only slightly slower
(Fig. 6).11

The degree of connectedness. In case of reliable agents, the complete graph tends to
outperform the wheel and cycle, with respect to both criteria of success (Fig. 4 and 5), as well as
with respect to the speed of exploration (Fig. 6). In other words, a higher degree of connectedness
tends to lead to a more efficient inquiry.

In case of deceptive agents, the situation is a bit trickier. On the one hand, higher degrees
of connectedness are also beneficial for the success according to the monist criterion (Fig. 5).
However, the effect of connectedness is inverse for the pluralist criterion given populations with up
to 70 agents (Fig. 4). A possible explanation for this asymmetry between the two success criteria
is that deceptive agents in more connected networks share more false positives. As a result, if one
theory is explored by a larger number of agents than either of the other theories, for the agents
on this theory it will be easier to attract the whole population to it, leading to a fast, possibly
wrong, convergence. In contrast, deceptive agents in the less connected networks will spread less
information among each other, resulting in fewer cases of wrong convergence. For populations
larger than 70 agents these premature convergences of the complete graph are prevented by the
fact that each theory has on average enough researchers praising it and pointing out problems
with the other theories so that the false positives are debunked as such more often.

9Further parameters, with short explanations, are as follows. The move probability (set to 0.5) together with the
degree of exploration of the argument an agent is situated at, determines the chance that she will move to another
argument every 5 rounds (the move incentive is further decreased by 1

5
for time steps in between). The visibility

probability (set to 0.5) is the probability with which a new attack is discovered when an agent further explores her
argument. The research speed (set to 5) determines the number of time steps an agent has to work on an argument
a before a reaches its next level of exploration. The strategy threshold (set to 0.9) concerns the fact that each theory
with a degree of defensibility that is at least 90% of the degree of defensibility of the best theory is considered good
enough to be researched by agents. The jump threshold (set to 10) concerns the number of evaluations an agent
can remain on a theory that is not one of the subjectively best ones.

10While our criterion is moderately pluralist, a more radical version would make plurality a necessary condition
of success (i.e. populations would be punished for converging on one theory). We leave this consideration for future
research.

11The plots concern the landscape consisting of three theories. The results were similar in case of two theories in
all the discussed respects, except that the agents were comparatively more efficient.
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Figure 4: Pluralist criterion of success, reliable and deceptive agents

Figure 5: Monist criterion of success, reliable and deceptive agents
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Figure 6: Time needed

Size of the community. Larger populations tend to be more efficient if agents are connected
in the complete graph. In contrast, larger populations of agents in less connected networks perform
similarly to smaller ones with respect to the pluralist criterion, and drastically worse with respect
to the monist criterion. The latter results from the lack of sufficient information flow, which is
why larger populations fail to converge on any (including the best) theory.

4 Discussion

In this section we will first comment on some of our results and then we will compare our model
with other ABMs designed to tackle similar questions.

We focus on two particularly interesting results: the impact of deceptive information sharing
in contrast to the reliable one, and the impact of the degree of connectedness on reliable agents.
Concerning the former, deceptiveness has not been studied in ABMs of science to a large extent.12

This is, however, an important issue for the efficiency of scientific inquiry. For instance, withholding
results that would undermine one’s theory, typical for scientific fraud, is an example of deceptive
information sharing. Even though deception is clearly problematic from the perspective of ethics of
scientific conduct, its effects on the efficiency of the given scientific community aren’t immediately
clear. For instance, one could assume that presenting one’s theory in positive light, in spite of
the early problems can attract new researchers and help in developing it further. Our findings
suggest that this is in general not the case, i.e. that deception tends to be epistemically harmful.
More precisely, assuming that the whole community consists of deceptive scientists, and that
scientists prefer theories that have the highest number of defensible results, deception leads to
significantly less successful (though slightly faster) inquiry. Whether these results hold also under
other assumptions remains to be examined in future research.

12One example of an ABM that studies deception in science is [12], which examines the effects of a deceptive
agent in a community of epistemically pure agents. The authors show that in general a higher degree of connectivity
helps against deceptive information. While our model doesn’t examine the case of mixed (reliable and deceiving)
agents, our results are, generally speaking, in line with their results.
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Our findings suggest that increasing the degree of connectedness of the communication network
tends to be epistemically beneficial. This contrasts with findings obtained in other ABMs [9, 10,
23, 24], according to which agents connected in a cycle perform better than agents connected in a
complete graph. In order to see whether and in which sense our results challenge the latter results
we first need to highlight some differences between our approach and these ABMs.

First, while in the latter agents are directly connected in the given networks, we employ a more
structured approach by distinguishing between collaborative (local research) groups and communal
networks between these groups. Note that in the real world it is impossible for each member of
a larger scientific community to invest time in communicating with all the other members for the
simple fact that communication (such as, e.g. reading papers) costs time, which could otherwise
be spent on doing research. Thus, we have started from the assumption that scientists only have
limited time for interacting with members of other collaborative groups, while they fully share
information within their own collaborative projects. Altogether this means, however, that the
highest degree of connectedness examined in our model gives rise to less information flow than
in models in which agents are directly linked into a complete graph. Second, the content of the
information shared among our agents is more localized and patchy since only representative agents
exchange information about local aspects of their theory, namely their current argument and its
neighborhood. As a result, agents from different collaborative groups end up having more diverse
subjective representations of the landscape than e.g. agents in [23, 24]. Third, our representation
of interaction includes a critical component. This is important for a model designed to examine
the efficiency of scientific knowledge acquisition due to the fact that criticism has been shown to
be truth conducive since it allows for false beliefs to be exposed as such [2]. Finally, similarly to
ABMs that employ epistemic landscapes [9, 10, 21], our argumentative landscape allows for the
representation of the process of discovery and its timeline. However, unlike the models employing
epistemic landscapes, the information that agents encounter via an argumentative landscape is
defeasible. This feature allows not only for the representation of critical interaction, but also for
specific heuristic behaviors,13 such as the search for a defense of an argument in case it has been
attacked.14 In this sense, our respective results might concern a different kind of scenario and
thus refer to different target phenomena.

Having explicated the differences between our and other ABMs, it is important to notice
though that there is no reason to assume that our model introduces more problematic idealizing
assumptions than the previous ABMs of scientific interaction when it comes to the representation
of a typical scientific inquiry. To the contrary, it includes a number of assumptions directly
relevant for its adequate representation. Thus, our findings suggest that the results obtained by
others models might not hold for usual cases of scientific inquiry. Instead, they may hold only for
some very specific contexts. Which subclass of the phenomenon of scientific inquiry each of these
models reliably represents, remains to be tackled in future research.

Finally, let us compare our model with Gabbriellini and Torroni’s (G&T) ABM [8]. Their aim
is to study polarization effects, e.g., in online debates. Similarly to our approach, their model is
based on an abstract argumentation framework. Agents start with an individual partial knowledge
of the given framework and enhance their knowledge by means of communication. Since G&T do
not model inquiry, their agents cannot discover new parts of the graph by means of ‘investigating’
arguments. Rather, they exchange information by engaging in a dialogue. This way, agents may
learn about new arguments and attacks but also remove attacks. Whether new information is
incorporated in the knowledge of an agent depends on the trust relation between the discussants.
The beliefs of agents are represented by applying Dung-style admissibility-based semantics to the
known part of the argumentation framework of an agent. This is quite different from our model

13Interestingly, comparing the results of our model that employs the heuristic behavior (HB) and the results
produced when HB is removed, shows that HB has hardly any impact on the success of agents, and in some cases
it even slightly lowers their success. This seems to suggest that HB, by making agents stay on an undefended
argument, waiting to find how to defend it, shields not only the best theory but also the worse ones, leading to an
overall less successful inquiry. Examining this issue in more detail remains a task for future research.

14Another important difference between our ABM and those in [23, 24] is that the latter examine a fringe case
of epistemically similar theories, which makes distinguishing the best one difficult.
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where the underlying graph topology is given by several discovery trees of arguments representing
scientific theories and attacks between them. This additional structure of the argumentation
graph is essential since we do not model the agents’ beliefs in individual arguments but rather
evaluative stances of agents that inform their practical decision of which theory to work on.
While an admissibility-based semantics would lead to extensions that feature unproblematic sets
of arguments from different theories (ones that form conflict-free and fully defensible sets), in our
approach agents pick theories to work on. For this, they compare the merits of the given theories,
pick the one that is most defended, and employ heuristic behavior to tackle open problems of
theories. It will be the topic of future research to include dialogue protocols that are relevant for
scientific communication, such as information-seeking, inquiry and deliberation dialogues [20].

5 Conclusion

In this paper we have presented an argumentative ABM aimed at modeling the argumentative
nature of scientific inquiry. The model is designed to examine how different kinds of social networks
affect the efficiency of scientists in acquiring knowledge. Under the assumption that, in order to
conduct their inquiry, scientists only have limited time to spend on communicating with others,
our results suggest that a high information flow tends to be epistemically beneficial.

A variety of enhancements can be added to our model in order to make it apt for tackling
similar or related questions. First, our current notion of the degree of defensibility represents
scientists who prefer theories that exhibit a greater number of defensible results than their rivals.
An alternative notion of defensibility would punish theories for having more anomalies (indefensible
arguments) than their rivals, thus representing scientists who stick to their theories as long as they
are not too anomalous (irrespective of how many positive results they have). Second, adding an
explanatory relation and a set of explananda [16] would allow for a more refined representation of
the desiderata of scientific theories and evaluative procedures which agents perform when selecting
their preferred theory (e.g. in addition to the degree of defensibility, agents can take into account
how much their current theory explains, or how well it is supported by evidence). Furthermore,
a number of enhancements available from the literature on argumentation frameworks, such as
probabilistic semantics [17], values [1], etc. can be introduced in future variants of our ABM. In
addition to examining the impact of social networks, the model can be used to examine different
heuristic behaviors and evaluations that guide scientific inquiry.
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