
A Basic Framework for Explanations in Argumentation

AnneMarie Borg1 and Floris Bex1,2

1Department of Information and Computing Sciences, Utrecht University
2Department of Law, Technology, Markets and Society, Tilburg University

{a.borg, f.j.bex}@uu.nl

Abstract

We discuss explanations for formal (abstract and structured) argumentation – the ques-
tion whether and why a certain argument or claim can be accepted (or not) under various
extension-based semantics. We introduce a flexible framework, which can act as the basis
for many different types of explanations. For example, we can have simple or comprehensive
explanations in terms of arguments for or against a claim, arguments that (indirectly) defend
a claim, the evidence (knowledge base) that supports or is incompatible with a claim, and
so on. We show how different types of explanations can be captured in our basic framework,
discuss a real-life application and formally compare our framework to existing work.

1 Introduction

Recently, explainable AI (XAI) has received much attention, mostly directed at new techniques for
explaining decisions of (subsymbolic) machine learning algorithms [12]. However, explanations also
play an important role in (symbolic) knowledge-based systems [8]. Argumentation is one research
area in symbolic AI that is frequently mentioned in relation to XAI. For example, arguments
can be used to provide reasons for or against decisions [8, 9]. The focus can also be on the
argumentation itself, where it is explained whether and why a certain argument or claim can be
accepted under certain semantics for computational argumentation [5, 6, 7, 13]. It is the latter
type of explanations we are interested in.

Two central concepts in argumentation are abstract argumentation frameworks [2] – sets of
arguments and the attack relations between them – and structured or logical argumentation frame-
works (e.g., [11]) – where arguments are constructed from a knowledge base and a set of rules and
the attack relation is based on the individual elements in the arguments. For both abstract and
structured argumentation frameworks we can determine extensions, sets of arguments that can
collectively be considered as acceptable, under different semantics [2]. In XAI terms [4], this is a
global explanation – what can we conclude from the model as a whole? However, as argumenta-
tion is being applied in real-life AI systems with lay-users, we would rather have simpler, more
compact explanations for the acceptability of individual arguments – a local explanation for a
particular decision or conclusion. We noticed the need for such explanations when deploying an
argumentation system at the Dutch National Police, which assists citizens in filing online reports
and complaints [1, 10].

We propose a basic framework for explanations in structured and abstract argumentation,
with which explanations for (non-)accepted arguments and (sub-)conclusions can be generated.
Though some work on explanations for argumentation-based conclusions exists in the literature
([5, 6, 7, 13], Section 5), our framework is generic in that the underlying argumentation framework
does not have to be adjusted and the definitions are semantics-independent – for example, the
explanations based on the new semantics of Fan and Toni [5] are a special case of our framework.
The framework is also flexible, as the contents of explanations can be varied. For example, rather

1

than returning all defending or attacking arguments, we can return only those that can defend
themselves, or the ones that directly attack an argument. Furthermore, we are the first to use the
structure of arguments for explanations: not just arguments for a conclusion, but also elements of
these arguments (e.g., premises or rules) can be returned as an explanation.

2 Preliminaries

An abstract argumentation framework (AF) [2] is a pair AF = 〈Args,Att〉, where Args is a set of
arguments and Att ⊆ Args×Args is an attack relation on these arguments. An AF can be viewed
as a directed graph, in which the nodes represent arguments and the arrows represent attacks
between arguments.

Example 1. Consider the AF AF1 = 〈Args1,Att1〉 where Args1 = {A1, A2, A3, A4} and Att1 =
{(A2, A1), (A3, A2), (A3, A4), (A4, A3)}.

Given an AFAF , Dung-style semantics [2] can be applied to it, to determine what combinations
of arguments (called extensions) can collectively be accepted.

Definition 1. Let AF = 〈Args,Att〉 be an AF, S ⊆ Args a set of arguments and let A ∈ Args.
Then:

• S attacks A if there is an A′ ∈ S such that (A′, A) ∈ Att, S+ denotes the set of all arguments
attacked by S;

• S defends A if S attacks every attacker of A;

• S is conflict-free if there are no A1, A2 ∈ S such that (A1, A2) ∈ Att; and

• S is admissible if it is conflict-free and it defends all of its elements.

An admissible set that contains all the arguments that it defends is a complete extension (cmp).

• The grounded extension (grd) is the minimal (with respect to ⊆) complete extension;

• A preferred extension (prf) is a maximal (with respect to ⊆) complete extension; and

• A semi-stable extension (sstb) S is a complete extension where S ∪ S+ is maximal.

Extsem(AF) denotes the set of all the extensions of AF under the semantics sem ∈ {cmp, grd, prf,
sstb}.

Where AF = 〈Args,Att〉 is an AF, sem a semantics and Extsem(AF) 6= ∅, it is said that A ∈ Args
is skeptically [resp. credulously] accepted if A ∈

⋂
Extsem(AF) [resp. A ∈

⋃
Extsem(AF)]. These

acceptability strategies are denoted by ∩ [resp. ∪]. A is said to be skeptically [resp. credulously]
non-accepted in AF if for some [resp. all] E ∈ Extsem(AF), A /∈ E . When these are arbitrary,
result in the same or are clear from the context, we will refer to accepted respectively non-accepted
arguments.

The notions of attack and defense can also be defined between arguments:

Definition 2. Let AF = 〈Args,Att〉 be an AF, A,B ∈ Args and E ∈ Extsem(AF) for some sem.
A can defend B directly or indirectly: A directly defends B if there is some C ∈ Args such that
(C,B) ∈ Att and (A,C) ∈ Att, and A indirectly defends B if A defends C ∈ Args and C defends
B. It is said that A defends B in E if A defends B and A ∈ E .

Similarly, A can attack B directly or indirectly: A directly attacks B if (A,B) ∈ Att and A
indirectly attacks B if A attacks some C ∈ Args and C defends B.

Next we define two notions that will be used in the basic definitions of explanations. The first,
used for acceptance explanations, denotes the set of arguments that defend the argument A, while
the last, used for non-acceptance explanations, denotes the set of arguments that attack A and
for which there is no defense in the given extension.

2

Definition 3. Let AF = 〈Args,Att〉 be an AF, A ∈ Args and E ∈ Extsem(AF) an extension for
some semantics sem.

• DefBy(A) = {B ∈ Args | B defends A};

• DefBy(A, E) = DefBy(A) ∩ E denotes the set of arguments that defend A in E ;

• NotDef(A, E) = {B ∈ Args | B attacks A and E does not attack B}, denotes the set of all
attackers of A for which no defense exists from E .

Example 2. In AF1 (recall Example 1), example conflict-free sets are {A1, A3} and {A2, A4}.
Extcmp(AF1) = {∅, {A1, A3}, {A2, A4}}, while Extprf(AF1) = Extsstb(AF1) = {{A1, A3}, {A2, A4}}
and Extgrd(AF1) = {∅}. None of the arguments in Args1 is skeptically accepted, while all of them
are credulously accepted for sem ∈ {cmp, prf, sstb}.

Argument A3 directly attacks A4, and attacks A2 both directly and indirectly. A3 defends A1

directly againstA2 and indirectly againstA4. Moreover, DefBy(A1) = {A3}, DefBy(A1, {A1, A3}) =
{A3} and NotDef(A3, {A2, A4}) = {A4}.

2.1 ASPIC+

We investigate explanations for a well-known approach to structured argumentation: ASPIC+ [11],
which allows for two types of premises – axioms that cannot be questioned and ordinary premises
that can be questioned – and two types of rules – strict rules that cannot be questioned and
defeasible rules. We choose ASPIC+ as the structured argumentation approach in this paper since
it allows to vary the form of the explanations in many ways (see Section 4). The definitions in
this section are based on [11].

Definition 4. An argumentation system is a tuple AS = 〈L,R, n〉, where:

• L is a propositional language closed under classical negation (¬), we denote ψ = −φ if
ψ = ¬φ or φ = ¬ψ.

• R = Rs ∪ Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form
φ1, . . . , φn → φ resp. φ1, . . . , φn ⇒ φ, such that {φ1, . . . , φn, φ} ⊆ L and Rs ∩Rd = ∅.
Where r ∈ R, Ant(r) = {φ1, . . . , φn} are the antecedents of the rule and Cons(r) = φ is the
consequent of the rule. Moreover, Rules(R, φ) = {r ∈ R | Cons(r) = φ}.

• n : Rd → L is a naming convention for defeasible rules.

A knowledge base in an argumentation system 〈L,R, n〉 is a set of formulas K ⊆ L which contains
two disjoint subsets: K = Kp ∪ Kn, the set of axioms Kn and the set of ordinary premises Kp.

Arguments in ASPIC+ are constructed in an argumentation system from a knowledge base.

Definition 5. An argument A on the basis of a knowledge base K in an argumentation system
〈L,R, n〉 is:

1. φ if φ ∈ K, where Prem(A) = Sub(A) = {φ}, Conc(A) = φ, Rules(a) = ∅ and TopRule(A) =
undefined;

2. A1, . . . , An ψ, where ∈ {→,⇒}, if A1, . . . , An are arguments such that there exists a
rule Conc(A1), . . . ,Conc(An) ψ in Rs if =→ and in Rd if = ⇒.

Prem(A) = Prem(A1)∪. . .∪Prem(An); Conc(A) = ψ; Sub(A) = Sub(A1)∪. . .∪Sub(An)∪{A};
Rules(A) = Rules(A1)∪. . .∪Rules(An)∪{Conc(A1), . . . ,Conc(An) ψ}; DefRules(A) = {r ∈
Rd | r ∈ Rules(A)}; TopRule(A) = Conc(A1), . . . ,Conc(An) ψ.

The above notation can be generalized to sets. For example, where S is a set of arguments
Prem(S) =

⋃
{Prem(A) | A ∈ S}, Conc(S) = {Conc(A) | A ∈ S} and DefRules(S) =

⋃
{DefRules(A) |

A ∈ S}.

3

Example 3. AS2 = 〈L2,R2, n〉 is an argumentation system where R2 = R2
s ∪ R2

d such that
R2
s = ∅, R2

d = {d1, . . . , d5} (the application of these rules is shown in the arguments below), let
K2 = K2

n ∪ K2
p where K2

n = {t} and K2
p = {r}. The following arguments can be constructed:

A1 : t B1 : r

A2 : A1
d3⇒ ¬r B2 : B1

d2⇒ p

A3 : A1, A2
d4⇒ q B3 : B1

d5⇒ ¬q

A4 : A3
d1⇒ p

We denote the set of arguments constructed from AS2 and K2 by Args2. For A4 we have that
Prem(A4) = {t}, Conc(A4) = p, Sub(A4) = {A1, A2, A3, A4} and Rules(A4) = {d1, d3, d4}. Fur-
thermore, Rules(R2, p) = {d1, d2}.

Attacks on an argument are based on the rules and premises applied in the construction of
that argument.

Definition 6. An argument A attacks an argument B iff A undercuts, rebuts or undermines B,
where:

• A undercuts B (on B′) iff Conc(A) = −n(r) for some B′ ∈ Sub(B) such that B′’s top rule r
is defeasible, it denies a rule;

• A rebuts B (on B′) iff Conc(A) = −φ for some B′ ∈ Sub(B) of the form B′′1 , . . . , B
′′
n ⇒ φ, it

denies a conclusion;

• A undermines B (on φ) iff Conc(A) = −φ for some φ ∈ Prem(B) \ Kn, it denies a premise.

Argumentation theories and their corresponding Dung-style argumentation frameworks can
now be defined.

Definition 7. An argumentation theory is a pair AT = 〈AS,K〉, where AS is an argumentation
system and K is a knowledge base.

A structured argumentation framework (SAF) defined by an argumentation theory AT is a
pair AF(AT) = 〈Args,Att〉, where Args is the set of all arguments constructed from AT and
(A,B) ∈ Att iff A attacks B according to Definition 6.

Dung-style semantics, as in Definition 1, can be applied to SAFs in the same way as they are
applied in AFs.

Example 4. (Example 3 continued) Consider the argumentation theory AT2 = 〈AS2,K2〉. Figure 1
contains the graphical representation of AF(AT2) = 〈Args2,Att2〉. In this framework there are no
undercuts, all the attacks from A2 are underminers and all the other attacks are rebuts.

A1 A2 A3 A4

B1 B2 B3

Figure 1: Graphical representation of AF(AT2).

Then: Extgrd(AF(AT2)) = {A1}; and Extsem(AF(AT2)) = {{A1, A2, A3, A4}, {A1, B1, B2, B3}},
for sem ∈ {prf, sstb}.

Entailment relations, induced by the structured argumentation framework and a semantics,
are defined by:

4

Definition 8. Let AF(AT) = 〈Args,Att〉 for a semantics sem, Extsem(AF) 6= ∅ and let some
φ ∈ L. We define:

• Credulous entailment : AT |∼∪sem φ iff for some E ∈ Extsem(AF) there is an argument A ∈ E
with Conc(A) = φ, it is said that φ is credulously accepted ;

• Skeptical entailment : AT |∼∩sem φ iff for each E ∈ Extsem(AF) there is some A ∈ E such that
Conc(A) = φ, it is said that φ is skeptically accepted.

When arbitrary or clear from the context, the superscript will be omitted (e.g., |∼grd as |∼∪grd and

|∼∩grd coincide).

Example 5 (Example 4 continued). For AF(AT2) = 〈Args2,Att2〉 we have that:

1. AT2 |6∼grd φ and AT2 |6∼∩sem φ for φ ∈ {q,¬q, r,¬r}, and sem ∈ {cmp, prf, sstb}; while

2. AT2 |∼∪sem φ for any φ ∈ {p, q,¬q, r,¬r, t} and sem ∈ {cmp, prf, sstb};

3. AT2 |∼grd t and AT2 |∼∩sem t for sem ∈ {cmp, prf, sstb}; and

4. AT2 |∼∩sem p for sem ∈ {prf, sstb} but AT2 |6∼grd p.

This follows since each argument from Args2 is part of at least one extension, but only A1 is part
of every extension. The last item follows since each sem-extension of AF(AT2) contains either A4

or B2 for sem ∈ {prf, sstb}.

2.2 Necessary Notation

This notation is meant to keep the definitions of explanations in Section 3 general and short.

Notation 1. Let AF = 〈Args,Att〉 be an AF, A ∈ Args and S ⊆ Args. Then, for some sem ∈
{grd, cmp, prf, sstb}:

• Esem
A = {E ∈ Extsem(AF) | A ∈ E} denotes the set of sem-extensions of AF which contain A;

• Esem

�ZA
= {E ∈ Extsem(AF) | A /∈ E} denotes the set of sem-extensions of AF which do not

contain A.

The set of arguments that can be used to explain the acceptance of a formula differs depending
on the acceptance strategy. For this the following notation will be applied.

Notation 2. Let AF(AT) = 〈Args,Att〉 be an SAF, φ ∈ L and let sem ∈ {grd, cmp, prf, sstb}. Then:

• Argsφ = {A ∈ Args | Conc(A) = φ} denotes the set of all arguments of AF(AT) with
conclusion φ;

• Argssem,∪φ = {A ∈
⋃
Extsem(AF(AT)) | Conc(A) = φ} denotes the set of all arguments

of AF(AT) with conclusion φ that are part of at least one sem-extension (i.e., that are
credulously accepted);

• Argssem,∩φ =

{
∅ if AT |6∼∩sem φ
Argssem,∪φ otherwise

is the same as Argssem,∪φ if φ is skeptically accepted and ∅ if it is not skeptically accepted.

Example 6. (Example 4 continued) Whenever Argssem,∩p 6= ∅, there is no difference between ∪ and

∩. But Argsq = Argssem,∪q = {A3} while Argssem,∩q = ∅ for sem ∈ {cmp, prf, sstb}.
Next it is defined what it means for two formulas to be connected in an argumentation system.

Definition 9. Let AS = 〈L,R, n〉 be an argumentation system. Then, φ is connected to ψ if
φ = ψ, or:

5

• there is some r ∈ R with Cons(r) = ψ and φ ∈ Ant(r);

• there is some γ ∈ L such that φ is connected to γ and γ is connected to ψ.

The set of all connected formulas of ψ is denoted by:

• Connected(ψ) = {φ ∈ L | φ is connected to ψ}.

In explanations for formulas for which no argument exists the following notation will be used:

Notation 3. Let AF(AT) = 〈Args,Att〉 be an SAF and let φ ∈ L be such that there is no argument
for it in Args. Then:

• NoArgAnt(φ) = {ψ | ψ ∈
⋃
{Ant(r) | r ∈ Rules(R, φ)} and @A ∈ Args s.t. Conc(A) = ψ}

denotes the set of formulas in antecedents of rules for φ for which no argument exists.

• NoArgPrem(φ) = {ψ ∈ Connected(φ) | Rules(R, ψ) = ∅ and ψ /∈ K} denotes the set of
formulas that are connected to φ but that are not part of K and for which no rules exist.

Intuitively, NoArgAnt determines the formulas for which arguments are missing in order for an
argument for φ to be available, while NoArgPrem determines the formulas that are not derivable
from AF(AT) (neither from K nor as a conclusion of some rule) and which could be part of the
derivation of an argument for φ.

Example 7. Consider AS2 from Example 3, but let K′2 = K2
p (i.e., K2

n = ∅). It follows that the
arguments A1, A2, A3 and A4 no longer exist. Thus there is no argument for ¬r nor for q (though
there is still an argument for p: B2). We have that: NoArgAnt(q) = {t,¬r}, Connected(q) = {t,¬r}
and NoArgPrem(q) = {t}.

3 Basic Explanations

We now define basic explanations in terms of two functions. D determines the depth of the
explanation, how “far away” we should look when considering attacking and defending arguments
as explanations. F determines the form of the explanation, whether we want, for example, an
argument as an explanation or only its premises. A formal definition of these functions is not
provided since domain (F) and codomain (D and F) are not fixed. We will sometimes use the
superscriptes acc and na to denote the function used in the context of acceptance [resp. non-
acceptance] explanations.

See Appendix A for an algorithm that computes the basic explanations.

3.1 Basic Explanations for Acceptance

We define two types of acceptance explanations, where ∩-explanations provide all the reasons why
an argument or formula can be accepted by a skeptical reasoner, while ∪-explanations provide one
reason why an argument or formula can be accepted by a credulous reasoner. For the purpose of
this section let Dacc(A,S) = DefBy(A,S) and Facc(T) = id(T) = T (i.e., id(S) = S for any set S).

3.1.1 Explanations for Accepted Arguments

An argument explanation for an accepted argument A consists of the arguments that defend it,
depending on the extensions considered according to the acceptability strategy.

Definition 10 (Argument explanation). Let AF = 〈Args,Att〉 be an AF and let A ∈ Args be an
accepted argument, given some sem ∈ {cmp, grd, prf, sstb} and an acceptance strategy (∩ or ∪).
Then:

Acc∩sem(A) =
⋃

E∈Extsem(AF)

Dacc(A, E);

Acc∪sem(A) ∈ {Dacc(A, E) | E ∈ Esem
A }.

6

Acc∩sem(A) provides for each sem-extension E the arguments that defend A in E , and Acc∪sem(A)
the arguments that defend A in one of the sem-extensions.

Example 8 (Example 2 continued). Recall AF1 = 〈Args1,Att1〉. We have that:

• Acc∪prf(A2) = {A4};

• Acc∪prf(A3) = {A3}.

3.1.2 Explanations for Accepted Formulas

In structured argumentation explanations for the acceptance of a formula φ can be requested, in
addition to argument explanations. For φ to be accepted, at least one argument for φ must exist.
Therefore, the existence of such an argument is part of the explanation as well.

Definition 11 (Formula explanation). Let AF(AT) = 〈Args,Att〉 be an SAF and let φ ∈ L
be such that AT |∼?sem φ, for sem ∈ {cmp, grd, prf, sstb} and ? ∈ {∩,∪}. Here S = Argssem,∩φ ,

A ∈ Argssem,∪φ and SA ∈ {Dacc(A, E) | E ∈ Esem
A }:

Acc∩sem(φ) =

〈
Facc(S), Facc

⋃
B∈S

⋃
E∈Esem

B

Dacc(B, E)

〉
;

Acc∪sem(φ) =

〈
Facc(A), Facc (SA)

〉
.

The first part of the explanation denotes arguments for φ (recall Notation 2) – all arguments
in the case of Acc∩sem(φ) and one argument in the case of Acc∪sem(φ). The second part of the
explanation is similar to the set of arguments in an argument explanation, although now the
function F is applied to it. This makes it possible to change the form of the explanation (e.g.,
premises instead of arguments). The main difference with argument explanations is that more
than one argument for φ may be considered in the ∩-explanation. The (skeptical) ∩-explanation
again takes all extensions in Esem

B into account to determine the arguments that defend B, while
for the (credulous) ∪-explanation again the defending arguments for A from just one extension in
Esem
A are taken.

Example 9. (Example 5 continued) Consider the SAF AF(AT2) for AT2 = 〈AS2,K2〉. Recall that
AT2 |∼∩prf p, hence:

• Acc∩prf(p) = 〈{A4, B2}, {A2, A3, B1}〉.

For other formulas the Acc∩sem-explanation does not apply, since none of these are skeptically
accepted. However:

• Acc∪prf(q) = 〈{A3}, {A2, A3}〉;

• Acc∪prf(¬q) = 〈{B3}, {B1, B3}〉.

3.2 Basic Explanations for Non-Acceptance

Similar to acceptance explanations, there are two types of non-acceptance explanations: ∩-
explanations for why an argument or formula is not accepted in some extensions (i.e., is not
skeptically accepted), and ∪-explanations for why an argument or formula is not accepted in
all extensions (i.e., is not credulously accepted). For this let Dna(A,S) = NotDef(A,S) and
Fna(T) = id(T) = T.

7

3.2.1 Explanations for Non-Accepted Arguments

In any Dung-style semantics based on the complete semantics, an argument is not accepted if it
is attacked and it is not defended by an accepted argument. Hence, intuitively, the explanation
for the non-acceptance of an argument is the set of arguments for which no defense exists.

Definition 12 (Non-acceptance argument explanation). Let AF = 〈Args,Att〉 be an AF and let
A ∈ Args be an argument that is not accepted, given some sem ∈ {cmp, grd, prf, sstb} and some
? ∈ {∩,∪}. Then:

NotAcc∩sem(A) =
⋃
E∈Esem

�AA

Dna(A, E);

NotAcc∪sem(A) =
⋃

E∈Extsem(AF)

Dna(A, E).

So the non-acceptance argument explanation contains all the arguments in Args that attack
A and for which no defense exists in: some sem-extensions (for ∩) of which A is not a member;
all sem-extensions (for ∪). That for ∩ only some extensions have to be considered follows since
A is skeptically non-accepted as soon as Esem

�ZA
6= ∅, while A is credulously non-accepted when

Esem

�ZA
= Extsem(AF).

Example 10. (Example 5 continued) Recall AF(AT2). Then:

• NotAcc∪grd(A3) = {B1, B3};

• NotAcc∪prf(B3) = {A2, A3}.

3.2.2 Explanations for Non-Accepted Formulas

The non-acceptance of a formula φ can have two causes: either there is no argument for φ at all
(i.e., it is not derivable) or all arguments for φ are attacked. In the first case φ is not part of the
knowledge base K. Moreover, if there are rules with φ as consequent, for each rule there is at least
one antecedent for which no argument exists.

Definition 13 (Non-derivability explanation). Let AF(AT) be an SAF and let φ be some non-
derivable formula. Then:

NotDer(φ) = 〈Rules(R, φ),

NoArgAnt(φ),NoArgPrem(φ)〉 .

The idea is that the explanation points out the gaps in the argumentation theory: the missing
knowledge base elements and/or missing rules. If there are rules for φ these are collected in the
first part of the explanation, the second part contains the missing antecedents of these rules (if
there would be arguments for all antecedents, there would be an argument for φ) and the third
part contains the formulas that are connected to φ but for which no rule exists (i.e., formulas
which are neither part of the knowledge base nor the consequent of a rule).

Example 11. (Example 7 continued) Consider again AS2 from Example 3, with the knowledge
base K′2 from Example 7 (i.e., K′2 = K2 \ {t}). There are no arguments for ¬r and q:

• NotDer(¬r) = 〈{d3}, {t}, {t}〉;

• NotDer(q) = 〈{d4}, {t,¬r}, {t}〉.

This follows since, although there is a rule for q (i.e., d4 ∈ R2
d) [resp. for ¬r (i.e., d3 ∈ R2

d)], there
is some ψ ∈ Ant(d4) [resp. ψ ∈ Ant(d3)] (i.e., ψ = t [resp. ψ = ¬r]) such that there is no argument
for t [resp. ¬r] in AF(AT2) and when looking at the missing premises to derive q [resp. ¬r] the
formula t, necessary for d3 is found.

8

Like for non-acceptance argument explanations, if an argument for φ exists but it is not ac-
cepted, there has to be an attacker for which there is no defense.

Definition 14 (Non-acceptance formula explanation). Let AF(AT) = 〈Args,Att〉 be an SAF and
let φ ∈ L be such that AT |6∼?sem φ, given some sem ∈ {cmp, grd, prf, sstb} and ? ∈ {∩,∪}. Here,
Sφ = Argsφ.

NotAcc∩sem(φ) =

〈
Fna(Sφ),Fna

 ⋃
A∈Sφ

⋃
E∈Esem

6A

Dna(A, E)

〉

NotAcc∪sem(φ) =

〈
Fna(Sφ),Fna

 ⋃
A∈Sφ

⋃
E∈Extsem(AF)

Dna(A, E)

〉 .

These explanations consist of the existing arguments for φ and the arguments for which no
defense exists from E under Dna. Similar to non-acceptance argument explanations, for ∩ only the
extensions without any argument for φ have to be considered, while for ∪ all extensions have to
be accounted for. By assumption Sφ 6= ∅, since otherwise the explanation for the non-acceptance
of φ would be its non-derivability.

Example 12. (Example 9 continued) Consider again AF(AT2). Recall that all arguments are
credulously accepted, we do however have:

• NotAcc∪prf(q) = 〈{A3}, {B1, B3}〉;

• NotAcc∪prf(¬q) = 〈{B3}, {A2, A3}〉.

4 Varying D and F
This section proposes several variations for D and F, the main purpose of which is to show the
flexibility of the basic framework. We focus on notions of defense, which are suitable for the
completeness-based semantics in this paper. For, for example, naive semantics, one might want
to base D on conflicts instead. In Section 4.4 these variations are discussed in the context of a
real-life application.

4.1 Notions of Defense

We start by only considering the arguments that defend themselves against all attacks.

Definition 15. Let AF = 〈Args,Att〉 be an AF, A,B ∈ Args and let E ∈ Extsem(AF) for some
semantics sem. Then:

FinalDef(A, E) = {B ∈ DefBy(A, E) | ∀C ∈ Args s.t. (C,B)

∈ Att, (B,C) ∈ Att} ∪
⋃
{DefBy(B, E) | B ∈ DefBy(A, E),

∀C ∈ DefBy(B, E),DefBy(C, E) = DefBy(B, E) and @D
∈ DefBy(B, E) s.t. ∀E ∈ Args s.t. (E,D) ∈ Att, (D,E) ∈ Att}

denotes the set of arguments that defend A in E and that are not attacked at all, defend themselves
against any attacker or are part of an even cycle that is not attacked.

Intuitively this means that these arguments that defend A do not need other arguments to be
defended and, given E , can be considered as safe to be accepted. To see why even cycles should
be regarded, take a look at the following example:

9

ED

B

A

C

F G

H I

(a) AF3, Example 13.

C1

B1

B2

B3

B4

A1

A2

A6

A4

A5

A3

(b) AF(AT6), Example 19.

A1 A2 A3 A4 A5

(c) AF4, Example 14.

B A C D

(d) AF ′
5, Example 16.

Figure 2: Graphical representations of the AFs in Section 4.

Example 13. (Figure 2(a)) Note that Extgrd(AF3) = ∅, while Extsem(AF3) = {{A,D,F,H},
{A,D,F, I}, {B,C,E,H}, {B,C,E, I}} for sem ∈ {prf, sstb}. Let E = {A,D,F,H}. Then
FinalDef(F, E) = {A,D,H}. This follows since H defends itself against the attack from I and
{A,D} is part of an even cycle that is not attacked. If even cycles would not be covered by
FinalDef, the defense of the attack (E,F) would not be accounted for.

Another option is to consider only the arguments that directly defend the considered argument.

Definition 16. Let AF = 〈Args,Att〉 be an AF, A,B ∈ Args and let E ∈ Extsem(AF) for some se-
mantics sem. Then: DirDef(A, E) = {B ∈ E | B directly defends A}, denotes the set of arguments
in E that directly defend A.

One reason for looking at direct conflicts might be that direct conflicts are often more clear
from the context than indirect conflicts.

Example 14. (Figure 2(c)). Here Extsem(AF4) = {{A1, A3, A5}} for any sem ∈ {grd, cmp, prf,
sstb}. Moreover:

• Acc(A1) = {A3, A5} for D = DefBy;

• Acc(A1) = {A5} for D = FinalDef; and

• Acc(A1) = {A3} for D = DirDef.

This minimal example can be seen as a discussion in the form of a sequence of arguments attacking
and defending the topic A1. When at the end an explanation for the acceptance of A1 is requested:
DefBy returns all arguments that defend A1; FinalDef returns the last argument that was put
forward, which is uncontested; and DirDef returns the argument against the direct attacker of the
topic.

Example 15. (Example 9 continued) Consider AF(AT2). Then, for Facc = id:

• Acc∩prf(p) = 〈{A4, B2}, {A2, A3, B1}〉, for Dacc = DirDef;

• Acc∩prf(p) = 〈{A4, B2}, {A2, B1}〉, for Dacc = FinalDef.

In the case of non-acceptance explanations, D was defined as the set of all attacking arguments
against which no defense exists. The next definition considers only those attackers that A does
not (in)directly attack itself.

Definition 17. Let AF = 〈Args,Att〉 be an AF, A,B ∈ Args and let E ∈ Extsem(AF) be an exten-
sion for some semantics sem. Then: NoDir(A, E) = {B ∈ NotDef(A, E) | A does not (in)directly
attack B} denotes the set of arguments that attack A for which no defense exists in E and which
are not attacked by A itself.

10

Intuitively, the members of NoDir(A, E) attack A but in order to defend A against the attack
another argument than A itself is necessary.

Example 16. LetAF5 = 〈{A,B}, {(A,B), (B,A)}〉. Here Extprf(AF5) = {{A}, {B}}, NotAcc∩(A) =
{B} for D = NotDef but NotAcc∩prf(A) = ∅ for D = NoDir since by accepting A, A can indeed

be concluded. Now let AF ′5 as in Figure 2(d). Then Extprf(AF ′5) = {{A,D}, {B,C}, {B,D}},
NotAcc∩prf(A) = {B,C} for D = NotDef and NotAcc∩prf(A) = {C} for D = NoDir, since in order to
defend A, just accepting A is not enough, D is needed to defend against the attack from C.

Example 17. (Example 12 continued) Consider AF(AT2) from Example 3. Then, for Facc = id
and Dna = NoDir:

• NotAcc∩prf(q) = 〈{A3}, {B1}〉;

• NotAcc∩prf(¬q) = 〈{B3}, {A2}〉.

4.2 Element Explanations

In structured argumentation, one can provide full arguments as the explanation (e.g., F = id), but
the structure of the arguments provides other possibilities as well.

Definition 18. Let AF(AT) = 〈Args,Att〉 be an SAF and S ⊆ Args a set of formulas. Then
AntTop(S) = {Ant(TopRule(A)) | A ∈ S} denotes the set of antecedents of the top rule of all
arguments in S.

The above definition, combined with the introduced notation in Definition 5, provides some
ideas of how F can be defined. For example, explanations in terms of premises explain the conclu-
sion in terms of knowledge base items. The notion AntTop provides explanations in terms of closely
related information and the rule with which the conclusion is derived from that information.

Example 18. (Examples 9 and 12 continued) Consider AF(AT2) from Example 3. Then, for
Dacc = DefBy and Dna = NotDef:

• Acc∩prf(p) = 〈{t, r}, {t, r}〉 for Facc = Prem;

• Acc∩prf(p) = 〈{q, r}, {t,¬r}〉 for Facc = AntTop;

• NotAcc∪prf(q) = 〈{t}, {r}〉 for Fna = Prem;

• NotAcc∪prf(q) = 〈{¬r, t}, {r}〉 for Fna = AntTop.

4.3 Comparing the Size of Explanations

When choosing a definition for D and F the size of the resulting explanation might be one of the
considerations. While for F this depends on the AF (e.g., an argument might have many premises
or the top rule might have only one antecedent), for D the size of the different definitions can be
compared. We will apply ≤ to the size of the sets, i.e., S1 ≤ S2 denotes |S1| ≤ |S2|.

Proposition 1. Let AF = 〈Args,Att〉 be an AF, let A ∈ Args and let E ∈ Extsem(AF) be an
extension for it. Where �∈ {≤,⊆}:

1. DirDef(A, E) � DefBy(A, E);

2. FinalDef(A, E) � DefBy(A, E);

3. NoDir(A, E) � NotDef(A, E).

This follows since DirDef(A, E) and FinalDef(A, E) are always subsets of DefBy(A, E) and
NoDir(A, E) is always a subset of NotDef(A, E). Indeed, Acc∩prf(p) is both ≤- and ⊆-smaller for

Dacc = DirDef than for Dacc = DefBy (see Example 15). Similarly, NotAcc∩prf(q), is ≤- and ⊆-smaller
for Dna = NoDir than for Dna = NotDef (see Example 17).

11

4.4 Applying the Basic Framework

One of the inspirations for this paper is an argumentation-based system in use by the Dutch
National Police, which assists citizens who might have been the victim of internet trade fraud
(e.g., malicious web shops or traders) in filing a criminal report [1, 10]. From this report basic
observations such as ‘money was paid by the complainant to the counterparty’ or ‘no package was
delivered to the complainant’ are collected, and these observations are used as premises in legal
arguments to infer whether or not the report concerns a possible case of fraud. This conclusion
is then provided to the complainant who filed the report. The system is based on ASPIC+ [11],
with axioms (the observations) and defeasible rules (based on Dutch law concerning fraud), and
all attacks are rebuts. The next example illustrates such an argumentation framework.

Example 19. Let AS6 = 〈L6,R6, n〉 be an argumentation system, where L6 contains the proposi-
tions p (the complainant paid), w (the wrong package arrived), fk (the product is fake), su (the
product looks suspicious), re (counterparty states that the product is real), cd (the complainant
delivered), cpd (the counterparty delivered) and f (it is fraud) and their negations and where R6

is such that the following arguments can be derived from K6 = K6
n = {p,w, su, re}:

B1 : p C1 : B1 ⇒ cd

B2 : w A1 : B2 ⇒ ¬f A4 : A3 ⇒ ¬cpd

B3 : su A2 : B2 ⇒ cpd A5 : B4 ⇒ ¬fk

B4 : re A3 : B3 ⇒ fk A6 : C1, A4 ⇒ f

Figure 2(b) shows the corresponding SAF AF(AT6). The preferred extensions of AF(AT6),
only mentioning the A arguments, are {A1, A2, A3}, {A1, A2, A5}, {A1, A3, A4} and {A3, A4, A6}.
None of A1, . . . , A6 is skeptically accepted and all are credulously accepted. Take conclusion f,
where E = {A3, A4, A6, B1, B2, B3, B4, C1}. Then:

• Acc∪prf(f) = 〈{A6}, {A3, A4, A6}〉 for Facc = id and Dacc ∈ {DefBy,DirDef};

• Acc∪prf(f) = 〈{p, su}, {p, su}〉 for Facc = Prem and Dacc ∈ {DefBy,DirDef};

• Acc∪prf(f) = 〈{cd,¬cpd}, {su}〉 for Facc = AntTop and Dacc = FinalDef;

• NotAcc∪prf(¬f) = 〈{A1}, {A3, A4, A6}〉 for Fna = id and Dacc = NotDef;

• NotAcc∪prf(¬f) = 〈{A1}, {A3, A4}〉 for Fna = id and Dacc = NoDir.

Looking at the different possibilities for F, we see that instead of the full arguments we can
also return just the premises (observations) of the supporting arguments, so ‘f because p and
su’. This is what the police system currently does. The reasoning behind this is that citizens
understand these more factual observations better than more legal concepts such as delivering
under a contract. On the other hand, for the public prosecutor involved in the processing of
complaints, an explanation in legal terms – ‘f because cd and ¬cpd’ (based on AntTop) – might
make more sense.

For D there are also different options. For example, FinalDef returns arguments that do not
need other arguments to defend them. That A3 is such an argument w.r.t. A6 means that this
argument A3 for fk is the ‘main reason’ we accept f , that is, without A3 the conclusion f will
never be accepted. With NoDir, no directly conflicting arguments are given (e.g., A6 which directly
conflicts with A1). This avoids explanations such as ‘(the argument for) ¬f is not accepted because
(there is an argument for) f ’.

4.5 Overview

In this section we have considered variations for the functions D and F. Acceptance explanations
can be given in terms of all the defending arguments (D = DefBy), the arguments that need no

12

further defense (D = FinalDef), and arguments that defend against direct conflicts (D = DirDef).
Non-acceptance explanations can be given in terms of all the attackers for which no defense exists
(D = NotDef) and those arguments that need to be defended by another argument (D = NoDir). In
a structured setting (e.g., in ASPIC+), the form of these explanations can be varied. We discussed
sets of arguments (F = id), sets of premises/observations (F = Prem) and sets of antecedents of
the last applied rule (F = AntTop).

5 Related Work

Fan and Toni [5] define relevant explanations for a single topic argument in the form of a new
related admissibility semantics, and show how explanations can be derived from related admissible
sets for abstract argumentation and ABA. A set of arguments is called related admissible if it is
admissible and each argument in it defends the topic. An explanation for an argument A (called
here RA-explanation to avoid confusion) is then defined as a related admissible set of arguments
with topic A. In the next proposition we show how RA-explanations can be expressed in our
framework.

Proposition 2. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args. Then {DefBy(A, E) | E ∈ Eadm
A }

is the set of all RA-explanations for A.

Proof. Let AF = 〈Args,Att〉 be an AF and let A ∈ Args. Suppose that Eadm
A 6= ∅. Let S ∈

{DefBy(A, E) | E ∈ Eadm
A }, we first show that S is related admissible:

S defends A. This follows by the definition of S = DefBy(A, E).
S is admissible. Note that S ⊆ E for some E ∈ Eadm

A , therefore S is conflict-free. Suppose that
there is some B ∈ S such that B is not defended against an attack from C ∈ Args. By definition
of DefBy, C (in)directly attacks A. Since A,B ∈ E , there is some D ∈ E such that D defends A
and B against C. By assumption, D /∈ S. A contradiction with the definition of DefBy. Therefore
S defends all of its arguments and is thus admissible.

Now suppose that there is some S′ which is an RA-explanation for A but S′ /∈ {DefBy(A, E) |
E ∈ Eadm

A }. By definition of related admissible sets A ∈ S′, S′ ∈ Eadm
A and for each B ∈ S′, B = A

or B defends A in S′, thus B ∈ DefBy(A, E), a contradiction. Hence any RA-explanation for A is
in {DefBy(A, E) | E ∈ Eadm

A }.

This shows that any Acc∪adm-explanation is an RA-explanation and that therefore our framework
is a more general version of [5].

Garćıa et al. [7] study explanations for abstract argumentation and DELP. Explanations for a
claim are defined as triples of dialectical trees that provide a warrant for the claim, dialectical trees
that provide a warrant for the contrary of the claim, and dialectical trees for the claim and its
contrary that provide no warrant. This means, on the one hand, that explanations might contain
many arguments and, on the other hand, that the receiver of the explanation is expected to un-
derstand argumentation and dialectical trees. With real-life applications in mind, we believe that
explanations that rely less on the underlying AF and that can be adjusted to the application are
more useful. Therefore, in our framework an explanation consists of a set of (parts of) arguments,
that could be embedded in a natural language sentence to be presented to a user, as suggested in
Section 4.4.

Explanations for non-accepted arguments in abstract argumentation are studied in [6, 13],
both of which focus on the structure of the AF and credulous non-acceptance under admissible
semantics. Note that we consider skeptical and credulous non-acceptance for several Dung-style
semantics. In [6] an explanation consists of either a set of arguments or a set of attacks, the
removal of which would make the argument admissible. In structured argumentation it is not
always possible to remove exactly one argument (or attack). In the AF of Figure 1, A3 would
become skeptically acceptable for any semantics, if B1 would be removed. However, when looking
at the underlying argumentation theory (recall Example 3), when B1 is removed, the arguments
B2 and B3 do no longer exist and thus ¬q is no longer a credulous conclusion. Therefore, in

13

this paper the basic definition for non-accepted arguments is defined in terms of the arguments
for which no defense exist and no suggestion is made how to change the AF in order to get the
considered argument accepted. In [13], explanations are sub-frameworks, such that the considered
argument is credulously non-accepted in that sub-framework and any of its super-frameworks.
Though a note was added on the applicability of such explanations in a structured setting, this is
not formally investigated in that paper.

Summarizing, our basic framework is (formally) shown to be more general, more flexible
and specifically adjustable to the receiver of the explanation. Furthermore, none of the above-
mentioned works consider the structure of the arguments when providing explanations.

6 Conclusions and Future Work

We have introduced a generic, flexible basic framework for explanations in structured and abstract
argumentation. With this framework, specialized local explanations for the (non-)acceptance of
arguments can be given, taking into account credulous and skeptical reasoners.

In future work, we plan to extend our framework with preferences – although showing prefer-
ences is sometimes considered less effective when providing explanations [9], the (non-)acceptance
of arguments very often depends directly on them, making a preference the direct reason for (not)
accepting an argument.

Given our basic framework, we will further study how our explanations formally relate to
acceptance strategies and different semantics, and investigate the necessity and sufficiency of
arguments and how to implement this in explanations.

Aside from formal investigations, we also want to look at how findings from the social sciences
on what good explanations are (see e.g., [12, 9]) can be integrated, and how different types of
explanations are evaluated by human users. Important in this respect is that explanations are
contrastive: while people may ask why A?, they often mean why A rather than B?, where A is
called the fact and B is called the foil. The goal is then to explain as much of the differences
between fact and foil as possible. One of the challenges for an AI system is that the foil is not
always explicit. We plan to study contrastive explanations within our framework by combining
acceptance and non-acceptance and the knowledge of conflicting arguments and contraries in the
case of an implicit foil.

Acknowledgment. This research has been partly funded by the Dutch Ministry of Justice and
the Dutch National Police.

References

[1] Floris Bex, Bas Testerink, and Joeri Peters. AI for online criminal complaints: From natural
dialogues to structured scenarios. In Workshop proceedings of Artificial Intelligence for Justice
at ECAI 2016, pages 22–29, 2016.

[2] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

[3] Wolfgang Dvořák and Paul E. Dunne. Computational problems in formal argumentation
and their complexity. In Pietro Baroni, Dov Gabay, Massimiliano Giacomin, and Leon
van der Torre, editors, Handbook of Formal Argumentation, pages 631–688. College Publi-
cations, 2018.

[4] Lilian Edwards and Michael Veale. Slave to the algorithm: Why a ‘right to an explanation’ is
probably not the remedy you are looking for. Duke Law & Technology Review, 16(1):18–84,
2017.

14

[5] Xiuyi Fan and Francesca Toni. On computing explanations in argumentation. In Blai Bonet
and Sven Koenig, editors, Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), pages 1496–1502. AAAI Press, 2015.

[6] Xiuyi Fan and Francesca Toni. On explanations for non-acceptable arguments. In Elizabeth
Black, Sanjay Modgil, and Nir Oren, editors, Proceedings of the 3rd International Workshop
on Theory and Applications of Formal Argumentation, (TAFA’15), LNCS 9524, pages 112–
127. Springer, 2015.

[7] Alejandro Garćıa, Carlos Chesñevar, Nicolás Rotstein, and Guillermo Simari. Formalizing
dialectical explanation support for argument-based reasoning in knowledge-based systems.
Expert Systems with Applications, 40(8):3233 – 3247, 2013.

[8] Carmen Lacave and Francisco J Diez. A review of explanation methods for heuristic expert
systems. The Knowledge Engineering Review, 19(2):133–146, 2004.

[9] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1 – 38, 2019.

[10] Daphne Odekerken, AnneMarie Borg, and Floris Bex. Estimating stability for efficient
argument-based inquiry. In Proceedings of the 8th International Conference on Computa-
tional Models of Argument (COMMA’20), volume 326, pages 307–318. IOS Press, 2020.

[11] Henry Prakken. An abstract framework for argumentation with structured arguments. Ar-
gument & Computation, 1(2):93–124, 2010.

[12] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intel-
ligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296, 2017.

[13] Zeynep Saribatur, Johannes Wallner, and Stefan Woltran. Explaining non-acceptability in
abstract argumentation. In Proceedings of the 24th European Conference on Artificial Intel-
ligence (ECAI’20), volume 325 of Frontiers in Artificial Intelligence and Applications, pages
881–888. IOS Press, 2020.

A Algorithm for the Computation of the Explanations

This appendix contains a discussion on the computation and computational complexity of the
basic explanations. In particular, we will provide a polynomial time algorithm that computes the
explanations, once the extensions of the argumentation framework are known.

A.1 Some preliminaries

Since an (abstract) argumentation framework (AF) [2] can be seen as a directed graph, one can
determine whether argument B is reachable from argument A and if so, what the distance between
the two arguments is. If B is reachable from A, it can be determined, based on the distance,
whether A (in)directly attacks or (in)directly defends B. These notions will be useful in calculating
explanations.

Definition 19. Let AF = 〈Args,Att〉 be an AF and let A,B ∈ Args. There is an attack-path
from A to B if (A,B) ∈ Att or there are C1, . . . , Cn−1 ∈ Args, such that (A,C1), (C1, C2), . . . ,
(Cn−2, Cn−1), (Cn−1, B) ∈ Att and no attack appears twice in this sequence. It is said that this
attack-path has length n and is along the attacks (A,C1), (C1, C2), . . . , (Cn−1, B), if (A,B) ∈ Att,
the path has length 1 and if A = B the attack-path has length 0.1

Intuitively, if the length of an attack-path between arguments A and B is odd [resp. even], A
(in)directly attacks [resp. defends] B.

1Note that an attack-path is known as a trail in graph theory.

15

A.2 The algorithm

The main idea of the basic framework for explanations is that the explanations can be calculated
from any argumentation framework, when it is know if an argument is accepted and how (i.e.,
whether an argument is skeptically or credulously (non-)accepted and under what semantics). In
order to compute these explanations we introduce an algorithm that can be applied after the
acceptance of the arguments in the framework is determined.

Algorithm 1 presents a method to calculate the length of all existing attack-paths in an argu-
mentation framework (Dist) and for each argument A the set of arguments from which a path to A
exists (Reach(A)). The algorithm is based on Procedure ReReach (Recursive Reach), a depth-first
search algorithm.

Note that the run time of the algorithm is finite when Args and Att are finite. This is the case
since for each A ∈ Args at most all attacks in Att are considered |Att| times.

Algorithm 1: Computing Reach and Dist.

Result: Reach and Dist are computed.
1 Given an AF AF = 〈Args,Att〉;
2 for A ∈ Args do
3 Reach(A) = {A} and Dist(A,A) = {0};
4 for B ∈ Args \ {A} do
5 Dist(A,B) = ∅;
6 for A ∈ Args do
7 ReReach(A,A, 0, ∅);

Procedure ReReach(A, A′, n, S)

1 Visited0 = S;
2 for A? ∈ Args s.t. (A?, A′) ∈ Att and (A?, A′) /∈ Visited do
3 Reach(A) = Reach(A) ∪ Reach(A?);
4 Dist(A?, A) = Dist(A?, A) ∪ {n+ 1};
5 Visited = Visited ∪ {(A?, A′)};
6 ReReach(A, A?, n+ 1, Visited);
7 Visited = Visited0;

A.3 Complexity results

Algorithm 1 has some desirable properties. In particular, it is sound and complete (i.e., for the
requested argument A it finds all the arguments from which A can be reached and the length of the
attack-paths between those arguments) and it runs in polynomial time. The latter is useful since
it shows that the computational complexity of computing the explanations for a certain semantics
is not more complex than computing the acceptance of an argument and/or the extensions under
that semantics [3].

Theorem 1 (Soundness and completeness). Let AF = 〈Args,Att〉 be an AF. Then:

1. there is an attack-path from A to B of length n iff n ∈ Dist(A,B);

2. A ∈ Reach(B) iff there is an attack-path from A to B;

In order to show the above theorem, we need some lemmas and propositions. These lemmas
and propositions will partially be shown by induction proofs, for which the following remark will
be useful.

16

Remark 1. Let AF = 〈Args,Att〉 be an AF and let A,B ∈ Args. It holds that A = B iff there is
an attack-path from A to B that has length 0. Similarly, (A,B) ∈ Att iff there is an attack-path
from A to B of length 1.

Lemma 1. If ReReach(A,A′, n,S) is called, there is an attack-path from A′ to A, of length n,
along the attacks in S.

Proof. Suppose that ReReach(A,A′, n,S) is called, either at Line 7 of Algorithm 1 or at Line 6 of
Procedure ReReach. We proceed by induction on n.

• If n = 0: then ReReach(A,A, 0, ∅) is called at Line 7 of Algorithm 1. Since A = A′, by
Remark 1, there is an attack-path of length 0 from A′ to A, without any attacks.

• If n = 1: then ReReach(A,A′, n,S) was called at the first iteration of Procedure ReReach.
Hence (A′, A) ∈ Att and (A′, A) /∈ ∅. By Remark 1, there is an attack-path of length 1 from
A′ to A.

Suppose now that the claim holds for n up to k ≥ 1.

• If n = k+ 1: then there is some B ∈ Args such that ReReach(A,A′, n,S) is called at Line 6
of the call ReReach(A,B, k, S′) where S′ = S \ {(A′, B)}). To see that S′ = S \ {(A′, B)},
note that Visited is updated at Line 5 with (A′, B) before ReReach(A,A′, n,S) is called and
if (A′, B) ∈ S′, the call to ReReach(A,A′, n,S) would not be reached.

By induction hypothesis, there is an attack-path from B to A of length k along the attacks
in S′. Since (A′, B) /∈ S′, it follows that the attack (A′, B) was not used in the attack-path
from B to A. Therefore, the path from A′ to A along (A′, B) and the attack-path B to A is
an attack-path from A′ to A of length k + 1 along the attacks in S.

The next proposition shows that Algorithm 1 is sound.

Proposition 3. If n ∈ Dist(A,B) then there is an attack-path from A to B of length n.

Proof. Suppose that n ∈ Dist(A,B), that there is an attack-path from A to B of length n is shown
by induction on n:

• If n = 0: then Dist(A,B) was updated at Line 3 of the algorithm (since at any other
place that Dist(A,B) might be updated, the addition is always more than 0). It follows
immediately that A = B. Hence there is an attack path from A to B of length 0.

• If n = 1: then Dist(A,B) was updated at Line 4 of the procedure in the first iteration of
the for-loop (since in any other iteration n 6= 0). It follows that (A,B) ∈ Att. Hence the
attack-path consists of one attack: (A,B). Thus there is an attack-path from A to B of
length 1.

Suppose that the proposition holds for values of n up to k, where k ≥ 1. Then:

• If n = k + 1: then Dist(A,B) was updated at Line 4 of Procedure ReReach. This is only
the case if there is some C ∈ Args such that ReReach(B,C, k,S) was called and (A,C) ∈ Att
such that (A,C) /∈ S. By induction hypothesis, there is an attack-path from C to B of
length k and by Lemma 1, this attack-path is along the attacks in S. Since (A,C) /∈ S by
assumption, the path from A to B via the attack (A,C) and the attack-path from C to B
is an attack-path, of length k + 1.

This shows that for any n, if n ∈ Dist(A,B), there is an attack-path of length n from A to B.

In the next lemma the relation between the attacks in an attack-path and the attacks in Visited
in the procedure is shown.

17

Lemma 2. If there is an attack-path from A to B, along the attacks (A,C1), (C1, C2), . . . , (Cn−1,
B) ∈ Att, for C1, . . . , Cn−1 ∈ Args, then during the run of the algorithm ReReach(B,A, n, {(A,C1),
(C1, C2), . . . , (Cn−1, B)} will be called.

Proof. Suppose that there is an attack-path from A to B, along the attacks (A,C1), (C1, C2), . . . ,
(Cn−1, B) ∈ Att, for C1, . . . , Cn−1 ∈ Args. We proceed by induction on n ≥ 1. Since B ∈ Args,
ReReach(B,B, 0, ∅) will be called at Line 7 of the algorithm.

• If n = 1: then (A,B) ∈ Att. At this point Visited is still empty, hence the for-loop at Line 2
of Procedure ReReach will be run for A. At Line 5, Visited becomes {(A,B)} and at Line 6,
ReReach(B,A, 1, {(A,B)}) is called.

Suppose the statement holds for values of n up to k ≥ 1. Then:

• If n = k+1: then there are C1, . . . , Ck such that there is an attack-path fromA toB along the
attacks (A,C1), . . . , (Ck, B). And hence there is an attack-path from C1 to B along the at-
tacks (C1, C2), . . . , (Ck, B) of length k. By induction hypothesis, ReReach(B,C1, k, {(C1, C2),
. . . , (Ck, B)} is called during the run of the algorithm.

Since (A,C1) ∈ Att, A is one of the arguments considered during this call. By assumption
(A,C1), . . . , (Ck, B) is an attack-path from A to B, therefore no attack appears twice. Hence
(A,C1) /∈ {(C1, C2), . . . , (Ck, B)}. Then Visited will be updated with (A,C1) at Line 5 and
at Line 6 ReReach(B,A, k + 1, {(A,C1), (C1, C2), . . . , (Ck, B)}) is called.

This shows that for any n, if there is an attack-path from A to B along the attacks in S,
ReReach(B,A, n, S) will be called.

The next proposition shows that Algorithm 1 is complete.

Proposition 4. If there is an attack-path from A to B of length n then n ∈ Dist(A,B).

Proof. Suppose that there is an attack-path from A to B of length n. We proceed again by
induction on n.

• If n = 0: then by Remark 1 A = B. By Line 3 of Algorithm 1, 0 ∈ Dist(A,A) and
0 ∈ Dist(B,B).

• If n = 1: then by Remark 1 (A,B) ∈ Att. By Line 4 of Procedure ReReach, 1 ∈ Dist(A,B).

Suppose that the statement holds for n up to k ≥ 1.

• If n = k+1: then there are C1, . . . , Ck+1 ∈ Args, such that A = C1, B = Ck+1, (C1, C2), . . . ,
(Ck, Ck+1) ∈ Att and there are no 1 ≤ i, j ≤ k such that i 6= j and (Ci, Ci+1) = (Cj , Cj+1)
(i.e., the attack-path does not follow an attack twice). Note that for any 2 ≤ i, j ≤ k + 1
such that i ≤ j, the corresponding subset of attacks is an attack-path from Ci to Cj . In
particular, (C2, C3), . . . , (Ck, B) is an attack-path from C2 to B of length k.

By induction hypothesis, k ∈ Dist(C2, B). Since k ≥ 1, Dist(C2, B) was updated at Line 4 of
Procedure ReReach during the ReReach(B,C3, k−1,S′) call of the procedure. By Lemma 2
it follows that S′ = {(C3, C4), . . . , (Ck, B)}. Then, at Line 5 Visited is updated with (C2, C3)
and, at Line 6, ReReach(B,C2, k, S

′ ∪ {(C2, C3)}) is called. Since (C1, C2) ∈ Att and since
there is an attack-path from C1 to Ck+1 along the attacks of S′ ∪ {(C1, C2), (C2, C3)},
Dist(A,B) will be updated at Line 4 with k + 1.

In our paper we are interested in the distance between two arguments (since this determines
whether the relation is an attack (the distance is odd) or a defense (the distance is even)), but
also in the arguments from which an argument is reachable. Both are computed by Algorithm 1
and the next lemma shows the relation between the two.

Lemma 3. Dist(A,B) 6= ∅ iff A ∈ Reach(B).

18

Proof. Let AF = 〈Args,Att〉 be an AF and let A,B ∈ Args. Assume that Algorithm 1 was run on
AF . Consider both directions separately.

⇒ Suppose that Dist(A,B) 6= ∅. This direction is shown by induction on the minimal value n
in Dist(A,B).

– If n = 0: then Dist(A,B) was updated at Line 3 of the algorithm (since at Line 4 of
the procedure the addition is always more than 0) and thus A = B. By Line 3 again it
follows that A ∈ Reach(A).

– If n = 1: then Dist(A,B) was updated at Line 4 of the procedure during the first
iteration of the for-loop, in which case (A,B) ∈ Att. By Line 3 it follows that A ∈
Reach(B).

Now suppose that the statement holds for n up to a value of k ≥ 1.

– If n = k+ 1: then Dist(A,B) was updated at Line 4 of Procedure ReReach. Therefore,
during this run of ReReach, at Line 3, Reach(B) is updated with Reach(A). Note that
by Line 3 of Algorithm 1 A ∈ Reach(A) and hence A ∈ Reach(B).

⇐ Now assume that A ∈ Reach(B). We consider three cases:

– A = B, then Reach(B) was updated at Line 3 of Algorithm 1, such that B ∈ Reach(B)
and 0 ∈ Dist(A,B).

– Reach(B) was updated at Line 3 of Procedure ReReach, with Reach(A). Then at Line 4,
Dist(A,B) is updated with n+ 1.

– Reach(B) was updated at Line 3 of Procedure ReReach, with Reach(C) and A ∈
Reach(C). Hence, by Proposition 3, there is an attack-path from A to C and there
is an attack-path from C to B. If no attack in the path from C to B is used in the
attack-path from A to C, the procedure will call all arguments in the attack-path from
A to C until it reaches A. At which point Dist(A,B) will be updated.

Suppose now that there is some (D1, D2) ∈ Att, such that (D1, D2) appears in both
paths. Then there is an attack-path from A to D1 (along the attacks (A,Ek), . . . , (E1,
D1), where Ek, . . . , E1 ∈ Args) and there is an attack-path from D1 to B. Without
loss of generality, suppose that (D1, D2) is such that there is no attack (D′1, D

′
2) in the

attack-path from A to D1 that also appears in the attack-path from C to B (otherwise
the described procedure has to be repeated). Since there is an attack-path from D1

to B (say of length ld), by Lemma 2, ReReach(B,D1, ld,S) is called. By assumption
{(A,Ek), . . . , (E1, D1)} ∩ S = ∅. Hence, for each i ∈ {1, . . . , k}, during the call for
ReReach(B,D1, ld,S), ReReach(B,Ei, ld + i,S ∪ {(Ei, Ei−1), . . . , (E1, D1)}) is called.
At ReReach(B,Ek, ld + k,S ∪ {(Ek, Ek−1), . . . , (E1, D1)}), note that (A,Ek) /∈ S ∪
{(Ek, Ek−1), . . . , (E1, D1)}. Hence Reach(B) is updated with Reach(A) and Dist(A,B)
is updated with ld + k + 1. Therefore Dist(A,B) 6= ∅.

This shows that, in any situation, if A ∈ Reach(B) then Dist(A,B) 6= ∅.

With the above results we have the proof of Theorem 1:

Proof. Let AF = 〈Args,Att〉 be an argumentation framework, A,B ∈ Args and suppose that
Algorithm 1 was run on AF . Then:

1. Soundness and completeness of the algorithm follows immediately by Propositions 3 and 4.

2. By Lemma 3 we know that A ∈ Reach(B) iff Dist(A,B) 6= ∅ and by the soundness and
completeness of the algorithm (i.e., the first item) it is known that n ∈ Dist(A,B) iff there
is an atack-path from A to B.

19

We now turn to the computational complexity of the algorithm. Note that the algorithm
does not determine whether an argument is accepted or not. It is therefore important that the
extensions have been determined before running the algorithm.

Theorem 2 (Computational complexity). Algorithm 1 runs in polynomial time. In particular the
time complexity is O(|Args| · |Att|2).

Proof. Let AF = 〈Args,Att〉 be an argumentation framework and suppose that Algorithm 1 was
run on this framework. Then:

• The first for-call of the algorithm takes |Args| time.

• Procedure ReReach runs in |Att|2: from each attack at most all other attacks are visited
exactly once (|Att|) and at most |Att| attacks end in a single argument (|Att|).

• The procedure is called |Args| times from Algorithm 1.

This gives a total of |Args| + |Args| · |Att|2, assuming that Att 6= ∅ (this is safe to assume since
argumentation could be considered interesting only when there are attacks), O(|Args| · |Att|2).

A.4 From algorithm to explanation

Algorithm 1 determines for each argument the set of arguments from which it is reachable, as
well as the distance between the arguments. From this we can define several notions that will
be used in the explanations. We will denote by Reachodd [resp. Reacheven] the arguments with
odd [resp. even] distance to the considered argument (i.e., Reachodd(A) = {B ∈ Reach(A) | ∃n ∈
Dist(B,A) s.t. n is odd} [resp. Reacheven(A) = {B ∈ Reach(A) | ∃n ∈ Dist(B,A) s.t. n is even}].

The next definition shows how DefBy and NotDef, used as a first suggestion for D in the
definition of the explanations, can be defined in terms of the notions calculated by the algorithm.

Definition 20. Let AF = 〈Args,Att〉 be an AF, A ∈ Args and E ∈ Extsem(AF) an extension for
some semantics sem. Suppose that Algorithm 1 was run on AF . Then:

• DefBy(A) = {B ∈ Reacheven(A)} denotes the set of arguments in Args that (in)directly
defend A;

• DefBy(A, E) = DefBy(A) ∩ E denotes the set of arguments that (in)directly defend A in E ;

• NotDef(A, E) = {B ∈ Reachodd(A) | E ∩ Reachodd(B) = ∅}, denotes the set of all (in)direct
attackers of A for which no defense exists from E .

Example 20. In the running example from the paper, for the argumentation framework AF(AT2)
we have that Reach(B3) = {A2, A3, B1, B3} and Dist(A2, B3) = {1, 3, 5}; and, where E = {A1, B1,
B2, B3}, we still have that DefBy(B3, E) = {B1, B3}, while NotDef(A2, E) = {B1}.

20

