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Abstract

In this paper we provide a detailed analysis of the inference process induced by logical argumentation
frameworks. The frameworks may be defined with respect to any propositional language and logic, dif-
ferent arguments that represent deductions in the logic, various support-based attack relations between
arguments, and all the complete Dung-style semantics for the frameworks. We show that, ultimately,
for characterizing the inference process with respect to a given framework, extension-based semantics
may be divided into two types: single-extension and multiple-extension, which induce respective kinds
of entailment relations. These entailments are further classified by the way they tolerate new infor-
mation (nonmonotonicity-related properties) and maintain conflicts among arguments (inconsistency-
related properties).

1 Introduction
Since its introduction, formal argumentation has become a core study in AI [14] and has been used in sev-
eral real-life applications [11, 25]. It models reasoning processes by argumentation frameworks, consisting
of arguments and attack relations between them [32]. In this context, arguments may be logical expres-
sions based on an underlying logic (i.e., language and inference relation), a knowledge-base, and a set of
rules, in which case the attacks are derived from the structure of the arguments (see [16, 18]). Conclusions
are derived by determining the extensions of the framework: sets of arguments that can collectively be
considered as acceptable, under different semantics.

It is evident that the nature of argumentation frameworks, and in particular those that are based on
the logical settings described above (called logical or deductive argumentation; [18]), is affected by sev-
eral factors, including the language and the deductive base of the arguments, the way arguments attack
each other, the argumentative semantics, and the method of choosing the conclusions from the extensions
(credulous or skeptical choices). In this paper we provide an analysis on how the inference properties of
argumentation frameworks are determined by their above-mentioned ingredients.

A variety of formal properties have been introduced for evaluating the plausibility of argumentation
frameworks (see, e.g., [21]), most of them are extensively studied in the literature with respect to different
forms of (logical) argumentation frameworks (see the next section for some discussion and references). In
this paper, we concentrate on the properties that refer to the entailment relations that are induced by the
argumentation frameworks. This, together with some well-known postulates from the literature of non-
monotonic and paraconsistent reasoning (e.g., [50, 42]), allow us to classify and characterize a variety of
argumentative entailments and thus analyze the conclusion making paradigms in logical argumentation.
Some of the new results reported in this paper are the following:

The final version was published in the Proceedings of the 18th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’21): https://doi.org/10.24963/kr.2021/6.
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1. We show that, despite the variety of Dung-style semantics for logical argumentation frameworks,
once the other ingredients (namely, the base logic, the types of attacks and the extension selection
method) are fixed, inferences are determined according to only one factor: whether the semantics
results in a single extension or, possibly, multiple extensions. As we shall see in the sequel, this has
far reaching consequences on the reasoning process.

2. From a different angle, we observe that (once the underlying semantics is determined) the nature
of the attack rules has a crucial effect on the properties of the entailment relations. Here, the main
factor is whether the attack is on a particular assumption of an argument (direct attacks) or on a set
of assumptions (set attacks).

3. We show how the extension selection method, namely whether any extension or all the extensions
are taken into consideration, affects the inference process.

We start in Section 2 by some references to related works. Then, in Sections 3 and 4 we recall some
basic notions from logical argumentation and define the scope of our study. Sections 5 and 6 are the heart
of the paper: Item 1 above is shown in Section 5 through characterization theorems of the extensions
of the frameworks and, as a consequence, of the induced entailment relations. We also provide in that
section some results on the relations of argumentative entailments and reasoning with consistent subsets of
premises [50], as well as relation to the default assumptions in [47] and adaptive logics [13, 53], extending
known results on the subject. Items 2 and 3 are shown through some classification results, in Section 6,
that relate argumentative entailments and general patterns for nonmonotonic reasoning (e.g., those in [42]
and in [46]), and study inconsistency maintenance [30, 23]. Finally, in Section 7 we discuss our results and
conclude.

2 Literature Review
In the context of formal argumentation, postulate-based investigations of argumentation frameworks play
a primary role, allowing not only to indicate how the ingredients of the frameworks affect their proper-
ties, but also to compare related approaches to argumentation-based reasoning. For instance, studies on
the properties of attack relations in logical argumentation appear in [2, 37, 57, 6]. Unlike our case, the
discussions in these papers (except the last one) are concentrated on classical logic as the base logic of the
frameworks, where the supports of the arguments are assumed to be classically consistent and the minimal
ones that entail the argument’s conclusion (see also Note 1 below). Several properties of extensions of
logical argumentation frameworks are studied in, e.g., [22, 2, 37, 1, 6], again (except the last one) with
respect to restricted supports of arguments.

This work provides a broad postulate-based overview, including generalizations of existing results as
well as new results on the inferential capabilities of argumentative entailments. The interplay between
logical principles concerning argumentation, on the one hand, and inference principles as studied in proof
theory, on the other hand, is also studied in [26]. In that paper a series of logical principles of attack
relations in argumentation frameworks is stated, and their collection leads to a characterization of classical
logical consequence relations that only involves argumentation frameworks. We refer to [26] and [27] for
further details.

Studies of inferential behavior of logical argumentation, and in particular its relation to nonmonotonic
reasoning, can also be found in [9, Section 5], in the context of dynamic proof systems. Similar studies for
ABA and ASPIC systems appear, respectively, in [28, 40, 41] and in [44].

An important aspect of argumentative inferences, also considered and generalized in this paper, is their
relation to reasoning with maximally consistent subsets [50]. Postulates on this kind of reasoning have a
primary role in several works and may be traced back to Cayrol ([24]). For detailed discussions and surveys
on this subject we refer to [5, 4]. Rationality postulates for other forms of structured argumentation, such
as ASPIC+ and ABA systems, can be found, e.g., in [48, 49] (for ASPIC+ systems) and [29, 41] (for ABA
systems).
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Our study involves some ideas and notions from proof theory.1 The main contribution of this work in
relation to related works such as the ones mentioned above is that it provides a comprehensive presentation
of the semantic as well as the inferential properties of logical argumentation frameworks, where only mini-
mal (proof-theoretic) requirements are made on the base logic and very little is assumed on the form of the
arguments. This allows to capture a wide range of core logics and to base arguments only on deducibility
in the core logic. In our study, we avoid the use of further conditions (such as conflict dependence and con-
flict sensitivity that are considered in [2] and [57]) that are computationally demanding, and so are rather
difficult to verify.

3 Logical Argumentation Frameworks
In the sequel, we denote by L an arbitrary propositional language. Sets of formulas are denoted by S, T ,
finite sets of formulas are denoted by Γ,∆, formulas are denoted by φ, ψ, and atomic formulas are denoted
by p, q, r, all of which can be primed or indexed. The set of atomic formulas of L (respectively, the atomic
formulas appearing in the formulas of S) is denoted Atoms(L) (respectively, Atoms(S)). The set of the
(well-formed) formulas of L is denoted WFF(L), the power set of WFF(L) is denoted ℘(WFF(L)).

Definition 1 (logic). A logic L = 〈L,`〉 consists of a language L and a consequence relation ` on
℘(WFF(L))×WFF(L), satisfying: reflexivity (S ` φ if φ ∈ S), monotonicity (if S ′ ` φ and S ′ ⊆ S, then
S ` φ), and transitivity (if S ` φ and S ′, φ ` ψ then S,S ′ ` ψ).

A logic L is assumed to be non-trivial (that is, S 0 φ for some S 6= ∅ and φ), structural (if S ` φ
then {θ(ψ) | ψ ∈ S} ` θ(φ) for every substitution θ), and compact (if S ` φ then Γ ` φ for some finite
Γ ⊆ S).

We shall assume that L contains at least a `-negation operator ¬, satisfying p 6` ¬p and ¬p 6` p (for
atomic p), and a `-conjunction operator ∧, for which S ` ψ ∧ φ iff S ` ψ and S ` φ. Also, we denote by∧

Γ the conjunction of all the formulas in (the finite set) Γ.
Let L = 〈L,`〉 be a logic and let S be a set of L-formulas. The `-closure of S is the set CNL(S) = {φ |

S ` φ}. We say that S is `-consistent, if there are no formulas φ1, . . . , φn ∈ S for which ` ¬(φ1∧· · ·∧φn).
Given a logic L = 〈L,`〉, an L-sequent (a sequent for short) [36] is an expression of the form Γ⇒∆,

where ⇒ is a symbol that does not appear in L. An L-argument is then a single-conclusion sequent,
representing L-entailments:

Definition 2 (argument). Let L = 〈L,`〉 be a logic and let S be a set of formulas in L. An L-argument
(argument for short) is an L-sequent of the form Γ ⇒ ψ,2 where Γ ` ψ. We say that Γ is the support set
of Γ ⇒ ψ (denoted Supp(Γ ⇒ ψ)) and that ψ is its conclusion (denoted Conc(Γ ⇒ ψ)). For a set S of
arguments, we let Supps(S) =

⋃
{Supp(a) | a ∈ S} and Concs(S) = {Conc(a) | a ∈ S}. An L-argument

based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We denote by ArgL(S) the set of all the L-arguments
based on S.

Note 1. It is sometimes assumed that the argument’s support is `-consistent and/or ⊆-minimal, that is:
none of its proper subsets `-entails the arguments’ conclusion (see, e.g., [17, 3]). To keep the presentation
as general as possible, we do not make such restrictions. See also the discussions in [7, 10, 31].

In what follows we shall assume that the logic L = 〈L,`〉 is equipped with a sound and complete
sequent calculus C for constructing sequents (and so arguments). A sequent is provable (or derivable) in
C if there is a derivation for it in C. Thus, Γ ⇒ ψ is provable in C iff Γ ` ψ. Note that this implies, in
particular, that for a given set S, all the elements in ArgL(S) are C-provable.

In structured argumentation it is often distinguished between two types of premises: strict (i.e., non-
attacked) and defeasible ones [33, 48, 19]. To accommodate this difference in our setting we consider a
`-consistent set of L-formulas X as strict premises. Their non-defeasible character will give them a special

1The incorporation of proof theoretical concepts and techniques in order to investigate and implement specific logical argumenta-
tion frameworks is not new. Cf. [34, 38, 52, 39, 8, 20, 9].

2Set signs in arguments are omitted.
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status when we define argumentative attacks below. To distinguish between X and the set S of the other
premises, we write ArgXL (S) for the set ArgL(X ∪ S). In particular, Arg∅L(S) = ArgL(S).

Just as arguments are constructed by inference rules in C, attacks between arguments can be represented
by (attack) rules. Such rules consist of an attacking argument (the first condition of the rule), an attacked
argument (the last condition of the rule), conditions for the attack (the other conditions of the rule) and
a conclusion (the eliminated attacked sequent). The outcome of an application of such a rule is that the
attacked sequent is ‘eliminated’ (or ‘invalidated’; see below the exact meaning of this). The elimination of
a sequent Γ⇒ φ is denoted by Γ 6⇒ φ.

Definition 3 (attack rules). Given a set X of strict (non-attacked) formulas, we consider the following
attack rules:3

• Defeat (DefX ): for Γ2 6= ∅, Γ2 ∩ X = ∅,

Γ1 ⇒ ψ1 ψ1 ⇒ ¬
∧

Γ2 Γ2,Γ
′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

• Direct Defeat (DDefX ): for γ 6∈ X ,

Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ Γ2, γ ⇒ ψ2

Γ2, γ 6⇒ ψ2

• Undercut (UcutX ): for Γ2 6= ∅, Γ2 ∩ X = ∅,

Γ1 ⇒ ψ1 ψ1 ⇒ ¬
∧

Γ2 ¬
∧

Γ2 ⇒ ψ1 Γ2,Γ
′
2 ⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

• Direct Undercut (DUcutX ): for γ 6∈ X ,

Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ ¬γ ⇒ ψ1 Γ2, γ ⇒ ψ2

Γ2, γ 6⇒ ψ2

• Cons. Ucut (ConUcutX ): for Γ2 6= ∅,Γ2 ∩ X = ∅,Γ1⊆X ,

Γ1 ⇒ ¬
∧

Γ2 Γ2,Γ
′
2 ⇒ ψ

Γ2,Γ
′
2 6⇒ ψ

The rules above indicate when the attacker challenges the attacked argument. For instance, when
{p,¬p} ⊆ S, X = ∅ and classical logic (CL) is the core logic, the sequents p ⇒ p and ¬p ⇒ ¬p attack
each other according to (Direct) Defeat and (Direct) Undercut. When S = {¬p} and X = {p} the attack
is uni-directional from p⇒ p to ¬p⇒ ¬p, since an argument cannot be attacked in its strict premises.

An argumentation framework is now defined as follows:

Definition 4 (argumentation framework). A (sequent-based) argumentation framework (AF), based on
the logic L and the attack rules in A, for a set of defeasible premises S and a `-consistent set of strict
premises X , is a pair AFXL,A(S) =

〈
ArgXL (S),A

〉
where A ⊆ ArgXL (S)×ArgXL (S) and (a1, a2) ∈ A iff

there is a rule RX ∈ A such that a1 RX -attacks a2.4 The superscript X and/or the subscripts L,A will be
omitted when they are clear from the context or arbitrary.

Example 1. Consider the modal logic S4 and the let S = {q, p⊃�r, q ⊃�¬r} and X = {p}. Some
arguments in ArgS4(S) are the following:

3For X = ∅ these are exactly the rules from [7, 54]. There, the reader can also find many other rules. In [19] sequent-based
argumentation has been generalized along similar lines, where the left side of a sequent is a pair Π | Γ consisting of a set of
defeasible premises Π and a set of strict premises Γ.

4The attacking and the attacked arguments must be elements of ArgXL (S), to prevent “irrelevant attacks”, in which, e.g., ¬p ⇒ ¬p
attacks p ⇒ p although S = {p}.
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a1: p⇒ p a2: q ⇒ q

a3: p, p⊃�r ⇒ �r a4: q, q⊃�¬r ⇒ �¬r
a5: p, p⊃�r, q⊃�¬r ⇒ ¬q a6: p, q, p⊃�r ⇒ ¬(q⊃�¬r)
a7: p, q, q⊃�¬r ⇒ ¬(p⊃�r) a8: q, p⊃�r, q⊃�¬r ⇒ ¬p

Figure 1 depicts (part of) the argumentation framework for this setting, with direct defeat as the sole
attack rule. In the figure, an arrow from a to b means that a attacks b.

a1

a2

a3a4

a8

a5

a7a6

Figure 1: A representation of the framework of Example 1.

Given an argumentation framework AFXL,A(S), Dung-style semantics [32] can be applied to it, to de-
termine what combinations of arguments (called extensions) can collectively be accepted from AFXL,A(S).

Definition 5 (extensions). Let AF = AFXL,A(S) =
〈
ArgXL (S),A

〉
be an argumentation framework and

let S ⊆ ArgXL (S) be a set of arguments. It is said that:

• S attacks a if there is an a′ ∈ S such that (a′, a) ∈ A. The set of all arguments attacked by S is
denoted by S+.

• S defends a if S attacks every attacker of a.

• S is conflict-free (cf) if for no a1, a2 ∈ S, (a1, a2) ∈ A.

• S is a stage (stg) extension of AF if S ∪ S+ is ⊆-maximal among the conflict-free sets.

• S is admissible (adm) if it is conflict-free and defends all of its elements.

• A complete (cmp) extension ofAF is an admissible set that contains all the arguments that it defends.

• The grounded (grd) extension of AF is the ⊆-minimal complete extension of ArgXL (S).

• A preferred (prf) extension of AF is a ⊆-maximal complete extension of ArgXL (S).

• The ideal (idl) extension of AF is the ⊆-maximal admissible set that is included in each preferred
extension.

• A stable (stb) extension ofAF is a conflict-free set in ArgXL (S) that attacks every argument not in it.

• A semi-stable (sstb) extension S of AF is a complete extension for which S ∪ S+ is ⊆-maximal.

• The eager (egr) extension of AF is the ⊆-maximal admissible set included in every semi-stable
extension.

We denote by Extsem(AF) the set of all the extensions ofAF of type sem for some sem ∈ {stg, cmp, grd, prf,
idl, stb, sstb, egr}. The subscript is omitted when it is clear from the context.

We are now ready to define the entailment relations that are induced from a given sequent-based argu-
mentation framework and its semantics.

Definition 6 (entailments). Given an argumentation framework AF = AFXL,A(S) and a semantics sem
for it, the following entailment relations are induced from AF :
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• Skeptical entailment: S |∼∩,semL,A,X φ if there is an argument a ∈
⋂

Extsem(AF) such that Conc(a) = φ.

• Weakly skeptical entailment: S |∼e,sem
L,A,X φ if for every extension E ∈ Extsem(AF) there is an argu-

ment a ∈ E such that Conc(a) = φ.

• Credulous entailment: S |∼∪,semL,A,X φ iff there is an argument a ∈
⋃
Extsem(AF) such that Conc(a) =

φ.

For fixed L,A and sem, it holds that |∼∩,semL,A,X ⊆ |∼
e,sem
L,A,X ⊆ |∼

∪,sem
L,A,X . The superscript X and the subscripts

L,A, sem are omitted in this and other notations when they are clear from the context or arbitrary. Since
the grounded, ideal and eager extensions are unique (see, e.g., [12]), |∼∩,semL,A,X , |∼e,sem

L,A,X and |∼∪,semL,A,X coincide
for sem∈{grd, idl, egr}, they are sometimes denoted |∼sem

L,A,X .

Example 2. Consider again the framework of Example 1 and Figure 1. The preferred extensions in this
case are:
Arg

{p}
S4 ({q, p⊃�r}), Arg

{p}
S4 ({q, q⊃�¬r}),

Arg
{p}
S4 ({p⊃�r, q⊃�¬r}).

These are also the (semi-)stable extensions of the

framework. Thus, although S ∪ X is inconsistent with respect to `S4, argumentative reasoning is not
degenerated in this case. For instance, it holds that S 6|∼?,sem

S4,{DDef},{p} ψ for any ψ ∈ S , ? ∈ {∩,e},
and sem ∈ {prf, stb, sstb}, but we do have that, e.g., S |∼?,sem

S4,{DDef},{p} (p ⊃ �r) ∨ (q ⊃ �¬r) when
? ∈ {e,∪} and sem ∈ {prf, stb, sstb}.

4 The Scope of Our Study
Despite the diversity of the logics and their sequent calculi covered in this work, for our results not too
many assumptions will be made about the actual content of the calculi. In fact, we only need to assume
that the rules of the basic calculus from Figure 2 are part of (or admissible in) C.

[Ref]
φ⇒ φ

[Cut]
Γ1 ⇒ ψ,Π1 Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ Π1,∆2

[LMon]
Γ⇒ ∆

Γ, φ⇒ ∆
[RMon]

Γ⇒ Π

Γ⇒ Π, φ

[¬⇒]
Γ⇒ Π, ϕ

¬ϕ,Γ⇒ Π
[⇒¬]

ϕ,Γ⇒ Π

Γ⇒ Π,¬ϕ

[∧⇒]
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
[⇒∧]

Γ1 ⇒ Π1, ϕ Γ2 ⇒ Π2, ψ

Γ1,Γ2 ⇒ Π1,Π2, ϕ ∧ ψ

Figure 2: Rules that are part of (or admissible in) the calculus C (in the case that C is single-conclusioned Π, Π1 and
Π2 should be empty and ∆ and ∆2 contain at most one formula).

The first four rules correspond to the properties of consequence relations (Definition 1): reflexivity
[Ref], transitivity [Cut] and monotonicity [LMon, RMon]; The other four rules refer to the behavior of
negation in the left-hand side of sequents [¬ ⇒], in the right-hand side [⇒ ¬], and similar rules for
conjunction ([∧⇒] and [⇒∧], respectively).

Example 3. Gentzen’s sequent calculus LK for classical logic, its single-conclusion variation LJ for in-
tuitionistic logic, as well as their extensions to modal logics (including the base logic S4 in Examples 1
and 2), are some well-known calculi for base logics that are covered by our study.

In what follows we shall examine three types of attacks in argumentation frameworks: set, dir and con.

Definition 7 (types of attacks). A set A of of attack rules may be of one of the following types:
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set: attack rules in which an argument is attacked on a (sub)set of its support, and where at least one of the
rules is Undercut or Defeat (i.e., A ∩ {DefX ,UcutX } 6= ∅),

dir: nonempty sets of direct attack rules (that is, ∅ 6= A ⊆ {DDefX ,DUcutX }),

con: dir-type set of rules that also contain ConUcut (that is, {ConUcutX } ( A ⊆ {ConUcutX ,DDefX ,DUcutX }).

Note 2. Any set of attacks from Definition 3 for which A \ {ConUcut} 6= ∅ falls in one of the three types
above. Moreover, these types are disjoint.

Our results will apply to completeness-based semantics.

Definition 8 (completeness-based semantics). A semantics sem (e.g., one of those in Definition 5) is
completeness-based, iff for every argumentation frameworkAF it holds that Extsem(AF) ⊆ Extcmp(AF).

Note 3. By their definitions, complete, grounded, and preferred semantics are all completeness-based rel-
ative to any type of attacks. Since it can be shown that every stable, semi-stable, ideal, and eager extension
is always complete (see, e.g., [12]), the same holds for these semantics. In general, stage extensions need
not be complete. However, the following result shows that for the three types of attacks in Definition 7, also
stage semantics is completeness-based. Therefore, in this paper, we will call stage semantics completeness-
based as well.

Proposition 1. If AF is a framework with attacks of one of the types in Definition 7, then Extstb(AF) =
Extstg(AF).

Proof outline. The direction Extstb(AF) ⊆ Extstg(AF) is trivial. For the converse, we note that any
framework with attacks of a type in Definition 7 has a stable extension.5 Suppose then that E ∈ Extstg(AF)

and let E ′ ∈ Extstb(AF). Since E ′ is conflict-free and E ′ ∪ E ′+ = Arg(AF), and since E ′ ∪ E ′+ is ⊆-
maximal among the conflict-free sets, also E ∪ E+ = Arg(AF). Thus, E ∈ Extstb(AF).

Notation 1. We denote by CMP the set of completeness-based semantics, and by ME (respectively, by SE)
the subset of multiple-extension (respectively, single-extension) semantics, namely:6

• CMP = {cmp, prf, stb, sstb, stg, grd, idl, egr},

• ME = {prf, stb, sstb, stg},

• SE = {grd, idl, egr}.

In what follows we then consider argumentation frameworks based on any propositional logic L with a
sound and complete sequent calculus C, in which the rules in Figure 2 are admissible, any set of assump-
tions (strict and/or deafeasible) in the language of the logic, any set of attack rules A of any one of the three
types given in Definition 7, and any semantics sem in CMP. To the best of our knowledge, this variety has
not been considered previously in the literature.

5 Characterizations of Extensions and Entailment Relations
In this section we characterize the extensions in Definition 5 and the entailment relations in Definition 6,
induced by argumentation frameworks with attacks of the types described in Definition 7. For this, we need
the following notations of different types of consistent sets of formulas.

Notation 2. For a logic L, a set S of formulas and a `-consistent set X of formulas, we say that S is
`X -consistent if S ∪ X is `-consistent. We denote.

• CSXL (S) is the set of the `X -consistent subsets of S, and MCSXL (S) consists of the ⊆-maximal
elements in CSXL (S).

5E.g., by Theorem 2 and the existence of preferred extensions.
6The exclusion of cmp from ME is explained in Note 4.
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• ΩXL (S) = {ω | ω ⊆ ℘(S)} is the set of subsets of ℘(S), satisfying the following two requirements:

a) the elements of ω are pairwise `X -consistent: Ti ∪ Tj is `X -consistent for every Ti, Tj ∈ ω.

b) for every finite T ∈ ℘(S) there is a T ′ ∈ ω such that either T ⊆ T ′ or T ∪ T ′ is `X -
inconsistent.

For ω ∈ ΩXL (S), we let ArgXL (ω) =
⋃
T ∈ω ArgXL (T ).

We are now ready for the first characterization result. For X = ∅, the first item in the following
theorem, for preferred and stable semantics, is known from the literature (see [6]); the other items are new.

Theorem 1. Given an argumentation frameworkAFXL,A(S) based on a logic L, a set A of attack rules that
are of type † ∈ {dir, con, set}. It holds that:

1. Extsem(AFXL,A(S)) = {ArgXL (T ) | T ∈ MCSXL (S)}
when † ∈ {dir, con} and sem ∈ ME.

2. Extsem(AFXL,A(S)) = {ArgXL (ω) | ω ∈ ΩXL (S)}
when † = set and sem ∈ ME.

3. Extsem(AFXL,A(S)) = {ArgXL (FreeXL (S))}
when † ∈ {con, set} and sem ∈ SE, and where FreeXL (S) is the set of formulas from S that are not
part of any ⊆-minimal `X -inconsistent subset of S.

4. Extsem(AFXL,A(S)) = {ArgXL (T )}
when † = dir and sem ∈ SE, and where S> = {φ ∈ S | φ is `X -consistent} and T = S> in case
S> is `X -consistent and T = ∅ otherwise.

Proof outline. We show here Item 4, leaving the other items to the full version of the paper.
We denote: S> = {φ ∈ S | φ is `X -consistent}. Let Extsem(AFXL,A(S)) = {E} and S⊥ = S \ S>.

Note that for each φ ∈ S⊥, there is a Ξ ⊆ X such that Ξ ⇒¬φ ∈ ArgXL (∅) attacks any argument a with
φ ∈ Supp(a). Also, ArgXL (∅) ⊆ E , since these arguments have no attackers.

Suppose first that S> is `X -consistent. It can be easily verified that ArgXL (S>) is conflict-free. Assume
that some b ∈ ArgXL (S) attacks some a ∈ ArgXL (S>). Thus, Supp(b) ∩ S⊥ 6= ∅ and hence b is attacked
by ArgXL (∅). So, ArgXL (S>) is defended by ArgXL (∅). Since ArgXL (∅) ⊆ E and by the completeness of E ,
ArgXL (S>) ⊆ E . We have already seen that any argument a′ with Supp(a′)∩S> 6= ∅ is attacked by E , and
so E = ArgXL (S>).

Suppose now that S> is `X -inconsistent and let Γ be a finite `X -inconsistent subset of S>. Assume for
a contradiction that ArgXL (∅) ( E . Since by the definition of sem, E is contained in every stable extension
and by Item 1, it follows that

⋃
{Supp(a) \ X | a ∈ E} ⊆

⋂
MCSXL (S) = FreeXL (S). Let a ∈ E with

Supp(a) \ X 6= ∅ and let φ ∈ Supp(a) \ X . Thus, for some Ξb ⊆ X , b = Γ ∪ Ξb ⇒ ¬φ attacks a. Hence,
there is a c = ∆ ⇒ ψ ∈ E that attacks b. So there is a γ ∈ Γ for which ψ ⇒ ¬γ is derivable, and by
[Cut], ∆ ⇒ ¬γ is also derivable. Hence (∆ ∪ {γ}) \ X is `X -inconsistent. Thus there is a minimally
`X -inconsistent set Θ ⊆ (∆∪{γ})\X , and since ∆\X ⊆ FreeXL (S), Θ = {γ}, i.e., γ is `X -inconsistent.
Hence, Ξ⇒ ¬γ is derivable for some Ξ ⊆ X , which is a contradiction to γ ∈ S>. Altogether, this shows
that E = ArgXL (∅).

Theorem 1 implies that we are essentially dealing with only two sub-classes of completeness-based
semantics:

Theorem 2. Let AF be a logical argumentation framework whose set of attacks is of type dir, con or set.
Then:

1. Extprf(AF)=Extstb(AF)=Extsstb(AF)=Extstg(AF),

2. Extgrd(AF)=Extidl(AF)=Extegr(AF).
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Theorem 2 can also be expressed in terms of entailment relations. For this, we shall somewhat modify
the notations of the entailments in Definition 6 and sometimes use the abbreviation |∼?,sem

L,†,X , where † ∈
{set, dir, con}, sem ∈ CMP and ? ∈ {∩,e,∪}. Thus, instead of explicitly mentioning the set A of attack
rules, we indicate (by † ∈ {set, dir, con}) what type of attack rules are taken into consideration.

In these notations, Theorem 2 indicates that for every fixed † ∈ {dir, con, set} and ? ∈ {∩,e,∪}, we
actually have two different argumentative entailments of the form |∼?,sem

L,†,X : one for sem ∈ ME and the other
one for sem ∈ SE. This is formalized in the next corollary.

Corollary 1. Let † ∈ {dir, con, set} and ? ∈ {∩,e,∪}. For every sem ∈ ME the entailments |∼?,sem
L,†,X are

the same. Likewise, for all sem ∈ SE, |∼?,sem
L,†,X coincide.

Note 4. To simplify the presentation, i.e., in order to avoid too many case distinctions, we have not listed
cmp among the semantics in SE and in ME. However, we note that |∼?,cmp

L,†,X = |∼?,sem
L,†,X either when ? = ∪

and sem ∈ ME, or when ? ∈ {∩,e} and sem ∈ SE. Thus, implicitly, reasoning with sem = cmp is
covered (here and in what follows) as well.

The next results relate argumentative entailments and consistency-based ones. The first result shows
a correspondence between argumentative entailments and inference by maximally consistent sets of the
premises [50, 47] (see also [5] and [4]). For this, we recall the following entailments:

Definition 9 (MCS-based entailments). Let L = 〈L,`〉 be a logic, S a set of L-formulas and X a `-
consistent set ofL-formulas. The following entailments are defined in a way similar to those in Definition 6:

• S |∼∩,mcs
L,X φ iff φ ∈ CNL(

⋂
MCSXL (S) ∪ X )

• S |∼e,mcs
L,X φ iff φ ∈

⋂
T ∈MCSX

L (S) CNL(T ∪ X )

• S |∼∪,mcs
L,X φ iff φ ∈

⋃
T ∈MCSX

L (S) CNL(T ∪ X )

Note 5. The family of entailments in Definition 9 covers, for instance, those proposed under the name
default assumptions in [47] or (in view of the characterization in [56]) adaptive logics [13, 53] that have
lower limit logics with adequate sequent calculi of the type in Figure 2.

We now relate the entailments in Definitions 6 and 9. A result similar to the next proposition is given
in [4], but only for DUcut∅ and ConUcut∅ as the attack rules and just for sem ∈ {grd, prf, stb}. Here we
generalize the setting to every logic in which the rules from Figure 2 are admissible, every completeness-
based semantics, and every framework whose attacks are of type dir, con or set.

Theorem 3. The following equivalences hold:

1. S |∼∪,semL,†,X ψ iff S |∼∪,mcs
L,X ψ for every † ∈ {con, set, dir} and sem ∈ ME ∪ {cmp}.

2. S |∼∩,semL,†,X ψ iff S |∼∩,mcs
L,X ψ for every † ∈ {con, set} and sem ∈ CMP.

3. S |∼∩,semL,†,X ψ iff S |∼∩,mcs
L,X ψ for † = dir and sem ∈ ME.

4. S |∼e,sem
L,†,X ψ iff S |∼e,mcs

L,X ψ for every † ∈ {con, dir} and sem ∈ ME.

5. S |∼e,sem
L,†,X ψ iff S |∼∩,mcs

L,X ψ for every † ∈ {con, set} and sem ∈ SE ∪ {cmp}.

Proof outline. Item 1: Suppose first that S |∼∪,mcs
L,X ψ. Thus, there is a maximal `X -consistent subset T of

S for which T ,X ` ψ. It can be shown (see, e.g., [6, Lemma 10]) that ArgXL (T ) ∈ Extcmp(AF). Since L
is finitary and by the completeness of C, there is an argument Γ⇒ ψ ∈ ArgXL (T ). Thus, S |∼∪,semL,†,X ψ.

For the converse, suppose that S |∼∪,semL,†,X ψ. Thus, there is an E ∈ Extcmp(AF) with a Γ ⇒ ψ ∈ E . It
can be shown (see, e.g., [6, Lemma 4]) that Γ \ X is a `X -consistent subset of S. By the soundness of C,
Γ ` ψ. Thus, there is a maximal `X -consistent subset T of S for which T ,X ` ψ, and so S |∼∪,mcs

L,X ψ.
Item 2 for ME-semantics and Item 3 follow from the fact that FreeX (S) =

⋂
MCSX(S), together

with the fact that if AF is of type dir or con, and if sem ∈ ME, then Extsem(AF) = {ArgXL (T ) |

9



T ∈ MCSXL (S)}. Item 2 for sem ∈ SE follows from Item 3 of Theorem 1. Item 4 is a straightforward
generalization to every ME-semantics of a similar result shown in [6] for sem ∈ {prf, stb}. Item 5 follows
from Item 2, as for single-extension semantics, |∼e,sem

L,†,X and |∼∩,semL,†,X coincide (concerning sem = cmp, this
follows from Note 4).

Example 4. Consider the sets S = {q, p⊃�r, q⊃�¬r} and X = {p} from Example 1. We have that:
MCS

{p}
S4 (S) = {

{q, p⊃�r}, {q, q⊃�¬r}, {p⊃�r, q⊃�¬r}
}
.

Thus, S 6|∼?,mcs
S4,dir,{p} ψ for any ψ ∈ S and ? ∈ {∩,e}, while S |∼?,mcs

S4,dir,{p} (p ⊃ �r) ∨ (q ⊃ �¬r) where
? ∈ {e,∪}. By Theorem 3, it is not a coincidence that these are the same results as those in Example 2,
obtained for any sem ∈ ME of the framework in Example 1 (and Figure 1).

To complete the characterization in Theorem 3 to the other entailments, we need the following nota-
tions:

Definition 10 (Ω-entailments). Let L = 〈L,`〉 be a logic. For sets S,X of L-formula, Ω = ΩX(S)
denotes the set that is considered in the second bullet of Notation 2. We define:

• S |∼∩,ΩL,X φ iff φ ∈ CNL

(⋂
ω∈Ω

⋂
T ∈ω T ∪ X

)
.

• S |∼e,Ω
L,X φ iff φ ∈

⋂
ω∈Ω

⋃
T ∈ω CNL(T ∪ X ).

• S |∼∪,ΩL,X φ iff φ ∈
⋃

ω∈Ω

⋃
T ∈ω CNL(T ∪ X ).

The following result immediately follows from Definition 10 and Item 2 of Theorem 1.

Theorem 4. For † = set, sem ∈ ME, and ? ∈ {∩,e,∪}, it holds that S |∼?,sem
L,†,X ψ iff S |∼?,Ω

L,X ψ.

6 Entailments Classifications
We now examine properties of the entailment relations. We distinguish between properties that are con-
cerned with nonmonotonic reasoning and those for inconsistency handling.

6.1 Principles for Nonmonotonic Reasoning
Monotonicity is a substantial characteristic of a reasoning process, as it determines whether inferences
remain valid in the presence of new information. In this section we check which argumentative entailments
have this property, and those who lack it are examined with respect to common patterns of nonmonotonic
reasoning that have been identified and studied in the literature (see, e.g., [35, 51, 42, 43, 46]).

First, we show that credulous entailments with respect to multiple extension semantics are in fact mono-
tonic.

Proposition 2. Every entailment of the form |∼∪,semL,†,X , where sem ∈ ME and † ∈ {dir, con, set}, is mono-
tonic.

Proof. We show that |∼∪,mcs
L,X is monotonic, and so the proposition follows by Item 1 of Theorem 3.

Suppose that S |∼∪,mcs
L,X ψ. Then there is a maximal `X -consistent subset T of S for which T ,X ` ψ.

Consider S ∪ S ′. Clearly, T is a `X -consistent subset of S ∪ S ′, and so there is a maximal `X -consistent
subset T ′ of S ∪ S ′ such that T ⊆ T ′. By the monotonicity of `, we have: T ′,X ` ψ, thus S,S ′ |∼∪,mcs

L,X
ψ.

Note 6. The last proposition does not hold for sem ∈ SE. Indeed, Extsem(AF∅CL,A({p})) = {ArgL(p)} for
every A and sem, while Extsem(AF∅CL,A({p,¬p})) = {ArgL(∅)} for any sem ∈ SE. Thus, for such sem

we have that for every † ∈ {dir, con, set}, p |∼∪,semL,†,∅ p while, p,¬p 6|∼∪,semL,†,∅ p.

We now turn to nonmonotonic entailments. It is common to examine such entailments according to the
following properties:
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Definition 11. Let L = 〈L,`〉 be a propositional logic and let |∼ ⊆ ℘(WFF(L))×WFF(L). We say that
|∼ satisfies:

`-cautious reflexivity (`-cR): φ |∼φ for a `-consistent φ.

`-right weakening (`-RW): S |∼φ and φ`ψ imply S |∼ψ.

`-left logical equivalence (`-LLE): If S, φ |∼ σ, ψ ` φ, and φ ` ψ, then S, ψ |∼ σ.

cautious monotonicity (CM): If S |∼ φ and S |∼ ψ, then S, φ |∼ ψ.

cautious cut (CC): If S |∼ ψ and S, ψ |∼ φ, then S |∼ φ.

or (Or): If S, φ |∼ σ and S, ψ |∼ σ, then S, φ ∨ ψ |∼ σ.

rational monotonicity (RM): If S |∼ ψ and S 6|∼ ¬φ, then S, φ |∼ ψ.

Since the rule Or is defined in terms of a disjunction connective ∨, in what follows we suppose that, in
addition to the rules in Figure 2, the two rules in Figure 3 are part of (or admissible in) the sequent calculus
C.

[∨⇒]
Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
[⇒∨]

Γ⇒ φ, ψ,∆

Γ⇒ φ ∨ ψ,∆

Figure 3: Rules for disjunction

The properties in Definition 11 are often gathered for classifying systems for nonmonotonic inference.

Definition 12. We say that an entailment |∼ is:

• `-cumulative, if it satisfies `-cR, `-RW, `-LLE, CM, CC.

• `-preferential, if it is `-cumulative and satisfies Or.

• `-rational, if it is `-preferential and satisfies RM.

Table 1 summarizes the classification of the argumentative entailments according to their components.

|∼∩,semL,†,X |∼e,sem
L,†,X |∼∪,semL,†,X

cumulativity, † ∈ {con, dir} CMP CMP SE

cumulativity, † = set CMP SE∗ SE

preferentiality, † = con – ME –

preferentiality, † = dir SE∗ CMP SE

preferentiality, † = set – – –

rationality, † ∈ {set, con} – – –

rationality, † = dir SE∗ SE∗ SE

monoton., † ∈ {dir, con, set} – – ME∗

Table 1: Summary of the properties of nonmonotonic inference. Cells with an asterisk apply also to sem = cmp (see
Note 4).

We leave the proofs of the positive parts of Table 1 to the full paper. Below, we show some negative
results in terms of counter-examples, all of them are considered w.r.t. L = CL.

Concerning cumulativity, the next example shows that CC is violated for |∼e,sem
L,set,∅ when sem ∈ ME.
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Example 5. Let S = {ψ1, ψ2, ψ3}, where ψ1 = p ∧ s, ψ2 = q ∧ (s ⊃ t), and ψ3 = ¬(p ∧ q) ∧ (q ⊃
s) ∧ (s ⊃ t). For every S-based framework with set-attacks, we have the following stable (preferred,
semi-stable, stage) extensions:
E1 = ArgCL({ψ1, ψ2}),
E2 = ArgCL({ψ2, ψ3}),
E3 = ArgCL({ψ1, ψ3}),
E4 = ArgCL({ψ1}) ∪ ArgCL({ψ2}) ∪ ArgCL({ψ3}).
Therefore, S |∼e,sem

CL,set,∅ s but S |6∼e,sem
CL,set,∅ t.

We now let S ′ = S ∪ {s}. This time, the stable (preferred, semi-stable, stage) extensions are:
E ′1 = ArgCL({ψ1, ψ2, s}),
E ′2 = ArgCL({ψ2, ψ3, s}),
E ′3 = ArgCL({ψ1, ψ3, s}),
E ′4 = ArgCL({ψ1, s}) ∪ ArgCL({ψ2, s}) ∪ ArgCL({ψ3, s}).
Therefore, S ′ |∼e,sem

CL,set,∅ t.

The next example, taken from [15], shows that CC is also violated by |∼∪,mcs
L,∅ . Thus, by Theorem 3 it

follows that cumulativity, preferentiality and rationality are violated by |∼∪,semL,†,∅ for every † ∈ {con, set, dir}
and sem ∈ ME.

Example 6. Let S = {p ∧ q,¬p ∧ r}. Then MCS∅CL(S) = {{p ∧ q}, {¬p ∧ r}}, and so S |∼∪,mcs
CL,∅ q,

but S |6∼∪,mcs
CL,∅ q ∧ r. Let now S ′ = S ∪ {q}. In this case MCS∅CL(S ′) = {{p ∧ q, q}, {¬p ∧ r, q}}, thus

S ′ |∼∪,mcs
CL,∅ q ∧ r.

Next we show that Or fails for |∼∩,mcs
L,∅ . It follows, then, (by Items 2 and 3 of Theorem 3) that |∼∩,semL,†,∅ is

not preferential when † ∈ {con, set} or when † = dir and sem ∈ ME. By the same example (together with
Item 5 of Theorem 3), |∼e,sem

L,†,∅ is not preferential also when † ∈ {con, set} and sem ∈ SE.

Example 7. Let S = {¬p,¬q,¬p ⊃ r,¬q ⊃ r}. Then:

• S, p |∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {p}) = {{p,¬q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}}

and so
⋂
MCS∅CL(S ∪ {p}) = {¬q,¬p ⊃ r,¬q ⊃ r},

• S, q |∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {q}) = {{¬p, q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}}

and so
⋂
MCS∅CL(S ∪ {q}) = {¬p,¬p ⊃ r,¬q ⊃ r},

• S, p ∨ q 6|∼∩,mcs
CL,∅ r, since MCS∅CL(S ∪ {p ∨ q}) = {{p ∨ q,¬p,¬p ⊃ r,¬q ⊃ r}, {p ∨ q,¬q,¬p ⊃

r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}}, and so
⋂

MCS∅CL(S ∪ {p ∨ q}) = {¬p ⊃ r,¬q ⊃ r}.

As Table 1 shows, rationality fails for |∼?,sem
L,†,X for ? ∈ {∩,e}, unless † = dir and sem = SE. E.g., by

the next example and Theorem 3, RM is violated by entailments of the form |∼e,sem
L,†,∅ where † ∈ {con, dir}

and sem ∈ ME.

Example 8. We show that RM doesn’t hold for |∼e,mcs
L,∅ . For this, consider again classical logic as the base

logic and let S = {r, p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, ¬p ∧ q}. We have: MCS∅CL(S) = {{r, (p ∧ r) ⊃
¬q,¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q}}. Only one of the two sets in MCS∅CL(S) implies ¬p, while
both of them imply q. Thus, S |∼e,mcs

L,∅ q and S 6|∼e,mcs
L,∅ ¬p. Now, MCS∅CL(S ∪ {p}) = {{r, (p ∧ r) ⊃

¬q,¬p ∧ q}, {p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q, p}, {r, p, (p ∧ r) ⊃ ¬q}}. It follows that S, p 6|∼e,mcs
L,∅ q, and so

RM is violated.

6.2 Principles for Inconsistency Handling
A primary goal of argumentation theory is to tolerate conflicting arguments. Such arguments may origi-
nate from contradictory information, thus argumentative entailments (unlike classical logic entailment, for
instance) should not be ‘explosive’, namely: an inconsistent set of premises should not imply any con-
clusion whatsoever. In this section we study different properties for rational reasoning in the presence of
inconsistency. We start by introducing some notations and notions:
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• We denote by S1 ‖ S2 that the sets S1 and S2 are syntactically disjoint, that is, Atoms(S1) ∩
Atoms(S2) = ∅.

• We say that a set S s.t. Atoms(S) ( Atoms(L) is contaminating (w.r.t. |∼X ), if for every S ′ s.t.
S ∪ X ‖ S ′ and every L-formula φ, it holds that S |∼X φ iff S,S ′ |∼X φ.

Definition 13. Let X ⊆WFF(L) be `-consistent, |∼X ⊆ ℘(WFF(L))×WFF(L), and ` ⊆ ℘(WFF(L))×
WFF(L) be a consequence relation in the sense of Definition 1. The following are properties that |∼X may
satisfy:

• conservative `X -consistency: for every `X -consistent set S of L-formulas and every L-formula ψ
it holds that S |∼X ψ iff S ∪ X ` ψ.

• paraconsistency [30]: for every distinct p, q ∈ Atoms(L) it holds that p,¬p 6|∼∅ q.

• non-interference [23]: for every two sets S1,S2 of L-formulas, and every L-formula φ such that
S1 ∪ {φ} ∪ X ‖ S2, it holds that S1 |∼X φ iff S1,S2 |∼X φ.

• crash-resistance [23]: there is no |∼X -contaminating set of L-formulas.

For non-interference we need the following definition:

Definition 14 (uniformity). A logic L = 〈L,`〉 is said to be uniform [45, 55], if for every two sets of L-
formulas S1,S2 and a formula φ such that S2 is both `-consistent and syntactically disjoint from S1∪{φ},
it holds that S1 ` φ iff S1,S2 ` φ.

Table 2 summarizes the results concerning inconsistency handling properties of argumentative entail-
ments.

|∼∩,semL,†,X |∼e,sem
L,†,X |∼∪,semL,†,X

conservative `X -consistency CMP CMP CMP

paraconsistency, X = ∅ CMP CMP CMP

non-interference, † ∈ {con, set} CMP CMP ME∗

non-interference, † = dir ME ME ME∗

crash-resistance, † ∈ {con, set} CMP CMP ME∗

crash-resistance, † = dir ME ME ME∗

Table 2: Summary of the results about inconsistency handling. For non-interference and crash-resistance L is assumed
to be uniform. By Note 4, cells with an asterisk apply also to sem = cmp.

Below are proofs for some of the results in Table 2. We start with conservative consistency.

Proposition 3. Let L = 〈L,`〉 be a logic. For every ? ∈ {∩,e,∪}, sem ∈ CMP and † ∈ {set, dir, con},
the entailment |∼?,sem

L,†,X satisfies conservative `X -consistency.

Proof. Let S be a `X -consistent set of L-formulas. Suppose first that there is an a ∈ ArgXL (S) such that
some b ∈ ArgXL (S) attacks a. Thus Conc(b) ⇒ ¬φ is derivable, where φ ∈ Supp(a) for † = dir and † =
con, and φ =

∧
Supp(a) for † = set (note that b is not a ConUcut-attacker, since S is `X -consistent). Thus,

by [Cut], we derive Supp(b)⇒ ¬φ. By [¬⇒], the fact that φ⇒ ¬¬φ is C-derivable, and [Cut], we derive
Supp(b), φ ⇒ . So, by [∧⇒] and [⇒¬], the sequent ⇒ ¬(

∧
Supp(b) ∧ φ) is derivable, a contradiction

to the `X -consistency of S. Thus ArgXL (S) is conflict-free, and so, Extsem(AFXL,A(S)) = {ArgXL (S)} for
every sem ∈ CMP.

Let now Γ⇒ φ ∈ ArgXL (S). Then Γ ` φ by the soundness of C, and by the monotonicity of ` (Def. 1),
S ∪ X ` φ. Hence, |∼?,sem

L,†,X⊆ `X (where `X = {(T , ψ) | T ∪ X ` ψ}). Now, suppose that S `X φ. By
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the completeness of C for L, and since L is finitary, there is Γ ⊆ S, such that Γ ⇒ φ ∈ ArgXL (S). Since
Extsem(AFXL,A(S)) = {ArgXL (S)} for every sem ∈ CMP, we have that S |∼?,sem

L,†,X φ. Thus, `X ⊆ |∼?,sem
L,†,X .

Altogether, `X = |∼?,sem
L,†,X .

As shown in Table 2, all the argumentative entailment relations considered here are paraconsistent.
Below, we give a proof for cases where the attacks are of type set or con.

Proposition 4. For every sem ∈ CMP, ? ∈ {∩,e,∪} and † ∈ {set, con}, the entailment |∼?,sem
L,†,∅ is

paraconsistent.

Proof. Let sem be a completeness-based semantics, S = {p,¬p} and let q 6= p. There is no a ∈
ArgL({p}) ∪ ArgL({¬p}) such that Conc(a) = q (otherwise, a is either ⇒ q, or p ⇒ q, or ¬p ⇒ q,
and by monotonicity and structurality we get that each case implies that ¬p ` p, which contradicts ¬ being
a negation). Suppose that there is some b ∈ ArgL(S), such that Conc(b) = q. Then Supp(b) = S. Note
that one can derive the argument⇒ ¬(p∧¬p) by [Ref], [¬⇒], [∧⇒] and [⇒¬] in C, and that this argument
attacks b by ConUcut, Ucut or Def. Thus, b is attacked when † ∈ {set, con} and it cannot be defended.
Therefore, S |6∼?,sem

L,†,∅ q.

Proofs of non-interference are rather lengthy, thus they are omitted. For the proofs, the base logic
needs to be uniform (Definition 14), which is indeed the case for the vast majority of the logics considered
in the literature. Under this assumption, in our setting (as defined in Section 4) non-interference implies
crash-resistance.

As indicated in Table 2, the only skeptical entailments (i.e., when ? ∈ {∩,e}) for which both non-
interference and crash resistance are violated, are those where † = dir and sem ∈ SE. We show this in the
next example.

Example 9. Let S1 = {p} and S2 = {q,¬q}. It is easy to see that for every sem ∈ SE and ? ∈ {∩,e}, it
holds that S1 |∼?,sem

L,dir,∅ p while S1,S2 |6∼?,sem
L,dir,∅ p. Note also that {q,¬q} is a contaminating set in these cases.

7 Discussion and Conclusion
The primary goal of this paper is to provide an outlook on logic-based argumentative reasoning and its
nature. We have done so in two senses:

a) Characterizations of Dung-type extensions according to the frameworks’ components (Theorems 1
and 2) and accordingly identifications of the induced entailment relations (Theorems 3 and 4).

b) Classifications of the argumentative entailments according to the way they tolerate revised informa-
tion and contradictory data (as summarized in Tables 1 and 2).

These results complete the picture, provided by some earlier works, to all the standard completeness-based
Dung-style semantics and for the main types of attack rules. As a result, in addition to the obvious factors
that affect the reasoning process (such as the base logic underlying the arguments at hand), we are now
able to identify other factors, some of which were not so evident so far. Below we summarize some of our
findings:

1. Theorem 1 vindicates the strong connection between argumentative inferences and reasoning with
maximally consistent subsets. Yet, this correlation is kept either for multiple-extension semantics
with attack rules of type dir or con, or for single-extension semantics with attack rules of type con or
set. For the other combinations of semantics and attack rules the relation to reasoning with consistent
subsets of the premises is more subtle.

2. By Corollary 1, the primary consideration concerning the chosen semantics, in relation to the en-
tailments that are induced by the underlying framework, is whether it allows a single extension or
multiple extensions.
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3. At least as far as plausible reasoning with inconsistent premises is concerned, Table 2 shows that
multiple-extension semantics are superior to single-extension ones. However, as shown in Table 1,
only single-extension semantics with direct attack rules assure rational patterns of non-monotonic
reasoning.

4. As expected, inferences are significantly affected by the type of reasoning under consideration
(namely, credulous versus skeptical). For instance, only credulous reasoning with multiple-extension
semantics yields monotonic entailments, while the other entailments are non-monotonic.

Future work involves, among others, the study of more expressive formalisms, based e.g. on first-order
logics, and formalisms that incorporate priorities among arguments.
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