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Abstract

Enforcement, adjusting an argumentation framework such that a certain set of arguments becomes
acceptable, is an important research topic within the study of dynamic argumentation, but one that has
been little studied for structured argumentation. In this paper we study enforcement in a general struc-
tured argumentation setting. In particular, we study conditions on the argumentation setting and the
knowledge base that ensure (or prevent) the acceptability of sets of formulas for structured argumenta-
tion frameworks.

1 Introduction

Argumentation is a dynamic process, in which derived conclusions have to be revised in view of new infor-
mation. However, basic abstract Argumentation Frameworks (AFs) — arguments and the attacks between
them [27] — and their conclusions — set(s) of arguments (extensions) that can collectively be accepted — are
static. Dynamic approaches to abstract argumentation have been studied, such as enforcement [8]: given a
set of arguments that we want to accept, how to change the argumentation framework in such a way that
this set becomes (part of) an extension in the resulting framework?

Although enforcement has been extensively studied for abstract argumentation (see [24] for an overview),
not much research has been conducted on enforcement for structured argumentation, where arguments can
be constructed by inferring conclusions (formulas) from a knowledge base (a set of formulas). In ab-
stract argumentation, dynamics is often modeled by adding arguments/attacks, but in structured argumen-
tation it is not possible to simply add specific arguments/attacks without directly influencing other argu-
ments/attacks in the framework. The structure of individual arguments means that there is a sub-argument
relation, for example, when an argument is based on a subset of the premises (formulas) of another argu-
ment. Thus, adding an argument means that its sub-arguments have to be added as well. Similarly, because
attacks are dependent on the formulas in the arguments, adding an attack could mean that we have to add an
argument as well. Hence, in a structured setting we should define enforcement in terms of formulas instead
of in terms of arguments: given a set of formulas that you want to accept, how to change the framework in
such a way that this set becomes (part of) the conclusions of an extension in the resulting framework?

For our study of enforcement of sets of formulas, we take a general approach to structured argumenta-
tion [15] so the results hold for many of the well-known approaches [11]. We allow formulas to be added to
the knowledge base, and show under which conditions on the attack relation and on the new information in
the knowledge base a set of formulas can be enforced. We see that a set of formulas can always be enforced
if it can be derived from a consistent set of formulas and either (i) that set is maximally consistent; or (ii)
the acceptance relation is monotonic; or (iii) the acceptance relation satisfies non-interference and the set
does not share any information with the already existing information. To the best of our knowledge, this is
the first study on enforcement of sets of formulas in a general structured argumentation setting.

Our study of enforcement in a structured argumentation setting is not only interesting from a theoretical
perspective. There are many real-world applications of structured argumentation, including those in legal
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reasoning [40], crime and forensics [12, 37], medicine [21, 48], technologies for behaviour change [19]
and debunking fake news [45]. In these application domains, dynamics and specifically enforcement for
structured argumentation is imperative. For example, when reasoning in legal or medical cases we want
to know whether new observations can enforce a new (legal/medical) conclusion or whether we can stop
looking for more evidence. Similarly, in persuasive dialogues for behaviour change or about fake news,
it makes sense to enforce one’s conclusion in as short a dialogue as possible, since in the case of long
dialogues the user will simply disengage.

We start our paper by further illustrating the need for enforcement in a real-life application of struc-
tured argumentation (Section 2). The setting from [15] and enforcement for abstract argumentation [8] are
recalled in Section 3. Then, in Section 4, enforcement in a structured setting are introduced. Finally, we
discuss the implications of some of the assumptions and restrictions made in the paper in Section 5 and
related work in Section 6. We conclude in Section 7.

2 Enforcement in Real-world Applications

At the Dutch National Police several argumentation-based applications are being deployed [12]. These
applications are aimed at assisting the police at working through high volume tasks, leaving more time
for tasks that require human attention. For example, there is an application that helps Dutch citizens to
file a complaint on online trade fraud and can then determine whether it is a case of fraud [38], and an
application helps the police to identify malafide webshops [37]. Each of these applications is based on
an inquiry process in which the system gathers information until the argumentation component (which
is based on a variation of ASPIC™ [39]) determines that the derived conclusion will not change if more
information is added (i.e., the conclusion is stable).

Take, for example, the application for online trade fraud. This system tries to determine whether, given
the information that the citizen has provided, the conclusion for fraud can be stably accepted (i.e., it is
currently accepted and will remain so with any future expansion of the knowledge base), or not (e.g., no
(accepted) argument for fraud is possible given the current knowledge base, or the acceptance of fraud
might still change when new information is obtained). Essentially, the question is whether the conclusion
fraud can be enforced for all possible expansions of the knowledge base, and if so, what information is
necessary for this enforcement. The application contains a rule-base (based on Dutch fraud law) and a set
of queryables, formulas that can be added to the knowledge base and from which (given the rule-base)
it might be possible to build arguments for the conclusion fraud. These queryables are observations that
can be gathered by, for example, asking the citizen more questions (e.g., ‘how much did you pay to the
suspected fraudster?’) or querying a database (e.g., ‘is the suspected fraudster known to the police?’). The
question of enforcement becomes then: which of these queryables should be added to the knowledge base
to enforce the conclusion fraud? Since the application (and the other applications mentioned here and in
Section 1) are based on structured argumentation frameworks (in the case of the trade fraud application
a variation of ASPIC™), the existing literature on enforcement does not help to answer this question. In
this paper we therefore study enforcement for structured argumentation in a general setting, the results of
which are general enough to be implemented in the police applications as well.

3 Preliminaries

In this paper it is assumed that there is a formal language L. Sets of formulas are denoted by S, T, finite sets
of formulas are denoted by I'; A, ©, formulas are denoted by ~, J, ¢, ¢ and atoms are denoted by p, ¢, 7,
all of which can be primed or indexed if needed. Furthermore, it is assumed that there is a deducability
relation =C @gn (L) X L (where pfi, denotes the set of finite subsets).

For the results in this paper it is not necessary to assume all the Tarskian conditions on - (i.e., reflexivity,
transitivity and monotonicity). Given a language L, a set of L-formulas S and a deducability relation -, we
denote the closure of S w.r.t. - by CNi-(S) = {¢ | IT C Ss.t. ' ¢}. When - is clear from the context it
will be omitted.



3.1 General Argumentation Setting

Abstract argumentation frameworks [27] are pairs AF = (Args, A), where Args is a set of arguments and
A C Args x Args is an attack relation on those arguments — in such frameworks, the arguments are abstract
entities with no internal content or structure. In structured argumentation the arguments in an argumentation
framework are constructed from a knowledge base and a set of rules and the attack relation is based on the
structure of these arguments.

Rather than choosing one of the well-known approaches to structured argumentation (see e.g., [11]) as
the framework for this paper, the general argumentation setting from [15] is taken as the argumentation
approach. This allows us to keep the results of the current paper as general as possible and does not require
to introduce all the specifics of one particular approach. Moreover, the results apply to some (e.g., ASPICT,
ABA and logic-based argumentation) of the approaches discussed in [11], since it was shown in [15] that
these can be translated into the general setting. We recall here the most important definitions from [15].

Definition 1 (Argument). Given a set of L-formulas S, the set of S-based arguments is denoted by
Args, (S), such that (I',y) € Args,_(S) iff I' - ~ for some I' C S. Given an argument a = (I',v) €
Args, (S), Conc(a) = ry denotes the conclusion of @ and Supp(a) = I' denotes the support set of a. Where
S is a set of arguments, Supps(S) = | J{Supp(a) | a € S} and Concs(S) = {Conc(a) | a € S}.

To accommodate argumentative attacks two types of functions are introduced: a contrariness function
T : L — p(L) that associates each formula with a set of conflicting formulas and a target function™ :
prn(L) \ 0 — pfn(L) that associates the support set of each argument with the sets of formulas in which
the argument can be attacked.

Example 1. Let £ be a formal language and ¢ the consequence relation from classical logic (CL). Some
examples of the contrariness and target function are:

negation (—): ¢ = {—¢}  conflict: ¢ = {3 | ¥, - L}
identity (id): T =T conjunction: T = {A\T" |TV CT}.
An argumentation setting is based on the deducability relation, the contrariness function and the target
function.

Definition 2 (Setting). An (argumentation) setting is a triple ASy- = (F,~,). A setting based on S C L is
given by ASy(S) = (S,H,7,%).

Attacks between arguments in a setting are based on the contrariness function and the target function:

Definition 3 (Attacks). Let AS, (S) be a setting and let « = (I',y) € Args, (S) and b = (A,d) €
Args, (S). Then a attacks b (in ¢) iff there is a ¢ € A such that vy € ¢.

Given a setting the corresponding argumentation framework can be defined.

Definition 4 (Argumentation framework). Given a setting ASy- (S), the corresponding argumentation frame-
work is the pair AF(AS1(S)) = (Args_(S),A), where Args,_(S) is the set of S-based arguments and
(a,b) € Aiff a,b, € Args, (S) and a attacks b.

Example 2. Let ASci (S) = (S,FcL, —,id) be an argumentation setting, based on classical logic, negation
(—) as the contrariness function and id as the target function, for S = {p, ¢, —7p V —¢}. Then some of the
arguments are:

a= ({p},p) d=({p,q},~(=pV —q))

b= ({a}.q) e=({p,~pV—q},~q)

c=({pVv-ah-pv-e) f=W{gmpVoadp)

Here, for example, f attacks a, d and e since p € Supp(a) N Supp(d) N Supp(e) and —p € p. Also,

d attacks ¢ since Supp(c) = {—p V ¢} and —(—p V =q) € =pV —q. See Figure 1 for a graphical
representation of part of the induced argumentation framework.

To determine which arguments can collectively be considered as accepted, Dung-style argumentation
semantics [27] can be applied to an argumentation framework.
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Figure 1: Graphical representation of part of the argumentation framework from Example 2.

Definition 5 (Argumentation semantics). Let AF(AS(S)) be an argumentation framework for a setting
ASi(S)andlet S C Args, (S) be a set of arguments. Then:

S is conflict-free iff there are no a, b € S such that a attacks b;

* Sdefends a € Args, (S) iff for each attacker b € Args, (S) of a there is a ¢ € S that attacks b;
* S is admissible (Adm) iff it is conflict-free and it defends every a € S; and

* S is complete (Cmp) iff it is admissible and it contains every a € Args, (S) it defends.

Some specific complete extensions are:

 Sis preferred (Prf) iff it is C-maximal complete;

* S is grounded (Grd) iff it is C-minimal complete;

* Sis stable (Stb) iff it is admissible and for all @ € Args, (S) \ S there is a b € S that attacks a.

Extensions will be denoted by &, the set of all Sem-extensions will be denoted by Sem(AF(AS,-(S))) for
Sem € {Adm, Cmp, Prf, Grd, Stb}.!

In this paper two types of acceptance relations are considered. These relations are functions with which
sets of accepted formulas can be derived from an argumentation framework, given a semantics.

Definition 6 (Acceptance relations). Let AF (ASy (S)) be an argumentation framework and let Sem € {Grd,
Cmp, Prf, Stb}. A non-empty set T of £-formulas is:

o skeptically accepted iff for all £ € Sem(AF(AS-(S))), T C Concs(E);
* credulously accepted iff there is some € € Sem(AF(AS(S))), T C Concs(E).

Example 3. In the argumentation framework for ASc (S), with S = {p, ¢, =p V —¢} from Example 2,
it can be shown that Args({p, q}), Args({p,—p V —q}) and Args({g, —-p V —q}) are the extensions for
Sem € {Prf, Stb}.

It follows that a formula ¢ is only skeptically accepted for Sem € {Grd, Cmp} if it is a tautology in
classical logic, p V ¢ is skeptically accepted for Sem € {Prf, Stb}, since at least p or ¢ is part of each
extension and from either p V ¢ can be derived in classical logic and all formulas ¥ € {p, ¢, —p V —q} are
credulously accepted for Sem € {Prf, Stb}.

3.2 Enforcement for Abstract Argumentation

In this section, we recall three types of expansions (adding arguments/attacks) and enforcement as intro-
duced in [8].

Definition 7. (Expansion, [8, Definition 5]) An argumentation framework AF* is an expansion of the
framework AF = (Args, A) iff AF* = (Args U Args™, A U A*), such that Args* # () and Args N Args* = ().
Such an expansion is:

* normal iff for all a and b, if (a,b) € A* then a € Args* or b € Args™;

'In what follows we will sometimes identify Grd(AF (ASy(S))) with its single element.



Figure 2: Graphical representation of the argumentation framework from Example 4.

o strong iff it is normal and for all @ and b, if (a,b) € A* then it is not the case that a € Args and
b € Args™;

* weak iff it is normal and for all @ and b if (a,b) € A* then it is not the case that a € Args* and
b € Args.

Definition 8. (Enforcement, [8, Definition 6]) Let AF = (Args, A) be an argumentation framework, Sem
a semantics and let S be a set of arguments, such that S ¢ Sem(AF). An enforcement of S is a framework
AF* such that (1) AF* is AF or a normal expansion of it and (2) S € Sem(AF*).

Example 4. Consider the argumentation framework AF = (Args,A), where Args = {a,b,c} and A =
{(a,b), (b, a)} shown as the solid part in Figure 2. Now suppose that AF is expanded: AF’ = (Args’,2"),
where Args’ = Args U {d,e} and &’ = A U {(a,d), (b,d), (d,c), (e,d)}. The resulting graphical repre-
sentation is the full graph of Figure 2. AF’ is a normal expansion of AF, since no new attacks are added
between the arguments of Args. It would be a strong expansion if (a, d) and (b, d) would not be part of A’
and it would be a weak expansion if (d, ¢) would not be part of 2’.

4 Enforcement for Structured Argumentation

Enforcement in structured argumentation differs from enforcement for abstract argumentation. While in
abstract argumentation enforcement is often based on the addition of arguments or attacks, in structured
argumentation it is usually not possible to add one specific argument without adding others as well, viz.

Example 5 (Example 2 continued). Consider again the argumentation setting ASc (S), with S = {p, ¢, ~pV
—q}. If one would want to add the argument ({r}, r) to AF(AScL(S)), r has to be added to S: 8" = sSU{r}.
However, then arguments such as ({p,7},p A r) and ({r},p V r) are added to Args, (S’) as well.

Therefore, the notion of an expansion has to be redefined for a structured setting: rather than chang-
ing the argumentation framework directly, the argumentation setting on which the framework is based is
expanded.

Definition 9 (Expansion, structured argumentation). Let AF(AS; (S)) be an argumentation framework, for
an argumentation setting ASy (S) and some set of formulas S C L. An expansion for AF(ASy(S)) is a set
of formulas " C £, such that S’ # () and S’ N S = (), and the resulting framework is AF(AS,-(SUS’)) =
(Args_(SU8’),n’), where (a,b) € A" iff a,b € Args,_(S U S’) and a attacks b as defined in Definition 3.

Now enforcement is not about (sets of) arguments, but about (sets of) formulas. Before defining en-
forcement in terms of sets of formulas, first some useful notions.

Definition 10 ((Strong) (in)consistency). Given an argumentation setting AS = (I, ~,~) a set of formulas
S and a set of formulas © C S. Then:

* O is AS, -inconsistent iff there is a v € O for which © \ {y} F 7/ where 4/ € 7. © is strongly
ASy(S)-inconsistent if © C ©' C S implies that © is inconsistent.

* Ois ASy-consistent iff it is not AS,--inconsistent and O is strongly AS\--consistent if ©' C © implies
that ©’ is AS,-consistent.

* © is maximal AS.-consistent iff there is no ASy-consistent © C S such that © C ©' and ©
is maximal strongly AS(S)-consistent if © C ©' C S implies that ©’ is not strongly AS\(S)-
consistent.



We denote CS(AS(S)) [MCS(aS,-(S))] for all [maximal] strongly AS; (S)-consistent sets of S. If the
argumentation setting is clear from the context we will write CS(S) [resp. MCS(S)].

Remark 1. Since |- is not assumed to be monotonic, we use the definition of strong inconsistency from [16].
Note that, when I~ is monotonic, this definition coincides with the definition of (in)consistency from [15].

Example 6 (Example 3 continued). In the argumentation framework from the previous subsection, where
AScL = (FcL,—,id) and S = {p,q, —p V —q}, the set S is ASc -inconsistent. However, every S’ C S is
AScL-consistent. In particular, there are three maximally consistent subsets: MCS(S) = {{p, ¢}, {p,—p V
—q}{q,~pV ~q}}.

In what follows we will assume that the set of formulas to be enforced is strongly ASy(S)-consistent,
since otherwise the consistency postulate from [17] could be violated.

Next, we define enforcement for structured argumentation. Enforcing a set of formulas can be done
strictly, where the conclusions are exactly that set of formulas, or non-strictly, where the set of formulas
has to be part of the conclusions (cf. [8]).

Definition 11 (Enforcement, structured argumentation). Let AF(AS,-(S)) be an argumentation framework
and let T C £ be the set of formulas to be enforced. Then:

» T is [strictly] credulously enforced by the expansion S’ C L if there is some extension £ €
Sem(AF(ASK (S U S’)) such that [Concs(E) = CN(T)] Cones(€) D T.

* Tis [strictly] skeptically enforced by the expansion " C L if for all extensions £ € Sem(AF(ASy (SU
S’)) it holds that [Concs(€) = CN(T)] Concs(€) 2 T.

Enforcement of a single formula ¢ means that T = {¢} in the definition above. The definition is kept
general in that S* C L. Depending on the application S’ might be restricted. For example, in the online
trade fraud example from Section 2 S’ would be restricted to the set of queryables, since these are the only
formulas that can be added to the knowledge base.

Example 7 (Example 2 continued). Consider again the framework AF (2S¢ (S)) for S = {p, ¢, —p V —q}.
Suppose that S = S U {r} as in Example 5. For this expanded set it holds that Prf(AF(AS-(3'))) =
{Argsc ({p, q,7}), Argsc. ({p, ~p V —q,7}), Argsc ({g,—p V —¢,7})}. Therefore r is both credulously
and skeptically enforced by {r}.

In the next sections formal results on whether enforcing a set of formulas is possible are shown. The
question of how such a set of formulas should be enforced is left for future work. We start by introducing
some useful properties.

4.1 Relating Sets of Formulas and Sets of Arguments

Since enforcement is about extensions (sets of arguments) and in the structured setting defined for sets of
formulas, sets of formulas and sets of arguments have to be related. In this section results for this relation
for static argumentation are presented.’

Most of the results in the remainder of the paper will be shown for argumentation settings with the
identity (id) target function.® In such settings, when the set of formulas is AS-consistent, there is only one
extension and all conclusions of that extension are skeptically accepted.

Lemma 1. Ler AS. = (7, id) be an argumentation setting and let S be a strongly AS.(S)-consistent set
of L-formulas. Then: Sem(AF(ASi(S))) = {Args_(S)} for Sem € {Grd, Cmp, Prf,Stb}, and CN(S) is
skeptically accepted in AF(AS(S)).

The next proposition shows how extensions of argumentation frameworks and sets of formulas are
related. While the relation between formal argumentation and reasoning with consistent subsets is well-
known [4], our result here (i.e., Proposition 1) is more general than the existing results. This is the case
since we employ the general setting from [15], but we restrict the setting less than is done in that paper

2Due to space restrictions we cannot provide proofs in this section. For full proofs we refer to Appendix A.
3See Section 5 for a discussion on this assumption.



(e.g., it is not assumed that the support set of an argument is consistent, nor that I- is transitive). Moreover,
we apply the more general notion of inconsistency from [16], which is also applicable to nonmonotonic |-.
It is, however, assumed that the setting is contrapositable (see also Footnote 3):

Definition 12. (Contrapositable settings [15, Definition 18]) A setting (I-,~) is contrapositable iff for all

© € phin(L), if © F ' where 4/ € F then forall § € ©, (O U {~})\ {0} F ¢ for some §' € §. By
extension we call AS,. = (F,7,~) contrapositable if (I, ) is contrapositable.

Proposition 1. Let AF(AS(S)) be such that AS,(S) = (F,%,id) is contrapositable and let Sem &€
{Cmp, Prf, Stb}:

1. if T € CS(S), then there is some T' D T such that Args,_(T') € Sem(AF(AS-(S)));
2. if T € MCS(9), then Args, (T) € Sem(AF(AS-(S)));

3. if € € Sem(AF(AS-(S))) then Supps(E) € CS(S);

4. if € € Prf(AF(AS-(8))) then Supps(€) € MCS(S) .

The first item states that for any consistent subset there is a superset from which an extension can be
constructed and the second item shows that arguments constructed from a maximally consistent subset
form an extension. The third item shows that the union of the support set of all arguments in an extension
is always consistent and the fourth shows that the support set of the arguments of a preferred extension is a
maximally consistent subset. Since enforcement in structured argumentation is defined for sets of formulas,
these results show how sets of formulas that should be enforced and extensions can be related.

4.2 Enforcing Formulas

Throughout this section we will consider several conditions that make enforcement of sets of formulas
(im)possible. In addition to general conditions on, for example, the set of formulas that should be enforced
and the acceptance relation, we will discuss the expansion types and the notion of monotonicity from [8].

Skeptical enforcement. The type of acceptance (i.e., skeptical or credulous) determines, partially, the
possibility of enforcing a set of formulas. Intuitively, it is easier to enforce a set of formulas credulously,
since then only one extension has to be considered, while for skeptical enforcement all extensions have
to be considered. Indeed, when the set of formulas that should be enforced can only be derived from sets
of formulas that are conflicting with the current knowledge base, the set cannot be skeptically enforced.
Before we show this, we introduce the next lemma:*

Lemma 2. Let AS. = (-, id) be an argumentation setting that is contrapositable and let S be a set of
L-formulas. Then: Grd(AF(AS-(S))) C Args,(Free(S)).

Proposition 2. Let ASy = (b,7,id) such that (F,7) is contrapositable, let S be a set of L-formulas and
suppose that T C L has to be skeptically enforced for Sem € {Grd, Cmp}. Then T cannot be enforced if
there is no minimal strongly AS, (S)-consistent S C L such that T C CN(S*), where S* C S' U S and
S'U 5" is strongly AS-(S)-consistent for each ASy-consistent S"” C S.

Proof. Let AS;- = (7, id) such that (I, ) is contrapositable, let S C £ and suppose that T C L has to
be skeptically enforced. Moreover, suppose that for each minimal S’ C £ such that there is some minimal
S* C s U ¢’ for which T C CN(S*), there is some AS-consistent S” C S such that S’ U S” is AS)-
inconsistent. It follows that for each S’, there is some v € S’ such that v ¢ Free(SUS’). By assumption S’
is minimal, from which it follows that v € S* as well. Since Grd(AF (AS-(SUS’))) C Args, (Free(sUs’)),
it follows that v ¢ Supps(Grd(AF(ASr(S U 8’)))). Since S* is minimal to obtain T, it follows that
T ¢ Concs(Grd(AF(AS-(SUS))). O

4In this section, where space allows we provide proof sketches of (parts of) the proofs. Full proofs can be found in Appendix B.
SFree(s) is the set of L-formulas from S that is part of every T € MCS(S): Free(S) = MNremes(s) T-



The next example illustrates what happens when T is inconsistent with the current set of formulas S.

Example 8. Consider the setting ASc. = (Fci,,id), let S = {p} and suppose that T = {—p} has to
be enforced. Note that S U T is ASci-inconsistent. We have that Grd(AF(ASc (S U T))) = () and that
Sem(AF(AScL(S U T))) = {{Argsc (S)}, {Argsc, (T)}} for Sem € {Prf,Stb}. Therefore, while T is
credulously enforced, it is not skeptically enforced.

Consistent sets. Now we consider the relation between extensions and sets of formulas as shown in
Proposition 1. In particular, any set of formulas T can be skeptically [resp. credulously] enforced if there
is some set of £L-formulas S’ such that T is part of the consequences of all [resp. some] maximal strongly
ASK(S)-consistent subsets of S U S':

Theorem 1. Let AF(AS(S)) be such that ASy- = (i, id) is contrapositable and let T C L be the set that
should be enforced. Then:

1. If T can be skeptically enforced then there is some S’ C L such that T C CN(S*) and S$* C
Free(SU ') for Sem € {Grd, Cmp};

2. T can be skeptically enforced iff there is some S’ C L such that for every S* € MCS(SU S'),
T C CN(S*) for Sem € {Prf,Stb},

3. T can be strictly skeptically enforced iff there is some S' C L such that for every S* € MCS(SU 3'),
CN(T) = CN(S*) for Sem € {Prf, Stb};

4. T can be credulously enforced iff there is some S C L and some S* € CS(S U 3') such that
T C CN(S*) for Sem € {Cmp, Prf,Stb};

5. Tcan be strictly credulously enforced iff there is some S’ C L such that there is some S* € MCS(SU
S") such that CN(T) = CN(S*) for Sem € {Prf, Stb}.

Proof. Let AF(AS-(S)) be such that AS; = (7, id) is contrapositable and let T C £ be a set of formulas.
We show Items 2 and 4:

2. (=) Suppose that T can be skeptically enforced by expanding S with S’. Then, for each extension
€ € Sem(AF(Asi(s U S’))), T C Concs(&). By Proposition 1.2 it follows immediately that for
any S* € MCS(s U s’), T C CN(S*), since Args,_(S*) € Sem(AF(ASr (s U S’))) and Concs(&E) C
CN(Args,(s*)).

(<) Suppose that T cannot be skeptically enforced, then for each S’ C L there is some £ €
Sem(AF(AS|-(S U 8’))) such that for some ¢ € T, ¢ ¢ Concs(E). By Proposition 1.4 Supps(€) €
MCS(s U s’). Hence, for any S’ C L, there is some S* € MCS(S U s’) such that for some ¢ € T,

¢ ¢ CN(s%).

4. (=) Suppose that T can be credulously enforced. Then there is some S’ C L, such that there is an
extension £ € Sem(2AF (AS,-(S U s’))) for which T C Concs(£). Note that T C CN(Supps(£)). By
Proposition 1.3 it follows that Supps(€) is consistent.

(<) Suppose that there is some S” C £ and some S* € CS(S U s’) such that T C CN(s*). By
Proposition 1.1 there is some S* C S# such that Args, (%) € Sem(AF(AS(S U 8’))). Since
T C CN(S*), for each ¢ € T there is some I' C s* C S# such that I - ¢. Therefore (T, ¢) €
Args, (S#) and hence T C Concs(Args, (S#)). O

Example 9. (Example 7 continued) With the results from Theorem 1, the skeptical enforcement of r in
Example 7 is not surprising: r € (MCS({p, ¢, —p V —¢,r}). This also explains why r cannot be strictly
enforced: there is no maximally consistent subset of S U {r} with r as the only member.

Remark 2. In the proof for skeptical enforcement, the results from Items 2 and 4 of Proposition 1 were
used, while for credulous enforcement, the results from Items 1 and 3 of Proposition 1 were used. Note
that in Proposition 1, Items 1 and 3 are implied by Items 2 and 4 respectively. This means that the results
for credulous enforcement are more generally applicable, but also that these results hold when only Items 2
and 4 of Proposition 1 are known for a setting.



Remark 3. In view of this theorem, one might suspect that enforcement in structured argumentation comes
down to finding maximally consistent subsets of which the desired set is a consequence. However, some
remarks are in order.

* As was shown in [44], it is possible to instantiate abstract argumentation with classical logic and
obtain a meaningful setting (i.e., the rationality postulates from [17] are satisfied) of which the con-
clusions do not correspond to maximally consistent subsets. Therefore, argumentation is a richer
formalism than reasoning with maximally consistent subsets and the result from Theorem 1 only
illustrates the possibility of enforcement under these conditions. See [4] for a more detailed discus-
sion on and [5] for a characterization of the relation between structured argumentation and maximally
consistent subsets.

* In this paper the results are about the (im)possibility of enforcement. When it comes to how a set
of formulas should be enforced the implementation might yield a different result. For example, new
information might be obtained over time in a dialogue setting (recall the online trade fraud example
from Section 2). In such a case, the result of a question might be different from what was necessary
to enforce a set of formulas and with that one answer the possibility of enforcement changes.

* Further possibilities to enforce sets of formulas are discussed in the remainder of the paper. For
example, the results from Proposition 3 and Theorem 2 do not rely on the results from Proposition 1
nor is it assumed that the argumentation setup is contrapositable.

Acceptance relation. Next we consider monotonic acceptance relations: when new information is added
the acceptance of the previously derived information does not change. While argumentation is mainly
employed to model nonmonotonic reasoning, as Lemma 3 shows, not all acceptance relations are non-
monotonic. Proposition 3 is therefore relevant in our setting as well.

Definition 13 (Monotonic acceptance relation). Let AF(AS,-(S)) be an argumentation framework. An
acceptance relation is called monotonic iff for any set of formulas T, if T is accepted in the framework,
then T is accepted in any expansion of that framework.

The next proposition shows that a (set of) formula(s) that can be derived from a consistent set of
formulas can be enforced in an argumentation framework in which the acceptance relation is monotonic.
We give an example of such a relation in Lemma 3.

Proposition 3. Let AF(AS(S)) be an argumentation framework for AS = (,~,id) and suppose that the
considered acceptance relation is monotonic. Then:

* Any formula ¢ € L, such that T - ¢ for an ASi--consistent ' C L, can be enforced by expanding S
with I'; and

o Let S' be an ASy-consistent set of L-formulas, such that T C CN(S"). Then T can be enforced by
expanding the framework with S'.

Proof. Let AF(AS(S)) be an argumentation framework for ASy = (F, =, id) with a monotonic acceptance
relation. We show the first item, the proof of the second item is similar. Suppose that I" - ¢ for some
strongly ASy-consistent I' C £ and that ¢ should be enforced. By Lemma 1 it follows that ¢ is accepted
in AF(ASi(T")). Since acceptance is assumed to be monotonic, ¢ is accepted in AF(AS,- (s UT)). O

The above results hold for contrapositable frameworks and credulous acceptance:

Lemma 3. If AF(AS\(S)) is an argumentation framework for a contrapositable setting ASy = (F,",id)
then credulous acceptance is monotonic for Sem € {Cmp, Prf, Stb}.

Proof. Let AF(AS(S)) be such that AS;- = (I, 7, id) is contrapositable, let Sem € {Cmp, Prf, Stb} and
suppose that T is credulously accepted in AF(AS(S)). Moreover, let ' C L be arbitrary. Since T is
credulously accepted in AF(AS; (S)), there is some £ € Sem(AF(AS(S))) such that T C Concs(€). By
Proposition 1.3 Supps(€) is strongly AS; (S)-consistent (i.e., Supps(£) € CS(S)) and thus, by Proposi-
tion 1.1 there is some Supps(£) C T’ C S U S’ such that Args, (T’) € Sem(AF(AS,- (s U S’))). Note that
T C Concs(Args, (T')). Therefore T is credulously accepted in AF(ASy (S U s'))), for any S'.



The next examples are counterexamples of acceptance relations that are not monotonic. The first shows
that skeptical acceptance is non-monotonic.

Example 10. Consider the setting ASc,. = {Fci, -, id) and let S = {p}. Note that p is a credulous conse-
quence in AF(ASc(S)) and since credulous acceptance is monotonic (Lemma 3) p will remain a credulous
consequence. Let —p be the formula that should be skeptically enforced. Note that, by Proposition 3, —p is
credulously enforced by expanding the framework with s = {—p}. However, then both p and —p will be
credulously accepted in AF(AScL(S U S)). Therefore, —p will never be skeptically accepted.

The second example considers argumentation frameworks in which a preference relation is defined
on arguments. Adding a preference relation is a common tool in the argumentation literature to refine
conclusions, see e.g., [3, 36]. However, as the example will show, the credulous acceptance relation is no
longer monotonic when preferences are added. In this paper we use the following notion of preferences
among formulas and sets of formulas:

Definition 14 (Preference relation). Let £ be a formal language, v : £ — N a preference relation on
formulas in £ and let ¢,¢p € L. We denote that ¢ is [strictly] preferred over ¥ w.r.t. v by [¢¥ <, @]
Y =y @

The preference relation can be lifted to sets of formulas, such that S C L is [strictly] preferred over
T C Lw.rt visdenoted by [T <, S] T =<, S. The formal definition of the lifting of the preference relation
to sets of formulas is left abstract in this paper. Examples can be found in, e.g., [36]. An argument a is
preferred over an argument b if Supp(a) is preferred over Supp(b), given some preference relation v. We
accommodate preferences in the attack relation in the usual way [3, 36]: for a, b, € Args_(S), a <-attacks
b iff a attacks b and Supp(b) is not strictly preferred over Supp(a).

Example 11. Let ASc. = (Fci, —,id) and S = {p} as in the previous example and suppose that there is a
preference relation v defined such that p <,, —p. In the flat case, both —p and p are credulously accepted in
the framework expanded with {—p}, since there was an argument ({—p}, —p) which attacks and is attacked
by ({p},p). However, in the prioritized case ({p}, p) can no longer attack ({—p}, —p): there is no defense
for the <-attack from ({—p}, —p). Hence p is no longer accepted given this v.

Relevance. The results in [15], on non-interference [18], can also be used to say something about the
possibility to enforce a (set of) formula(s). Intuitively, non-interference is a helpful property to have, since
it indicates that adding irrelevant information does not change the acceptability of the already derived
conclusions. In what follows let Atoms(S) denote the set of atoms that occur in the formulas of S. It is
said that two sets of formulas Sy and So are syntactically disjoint (denoted by Sy | Sa) if Atoms(S1) N
Atoms(Sz) = 0.

Definition 15. (Non-interference, [18]) An acceptance relation satisfies non-interference iff for all S; U
{¢} Usy C L such that (S; U {¢}) | S it holds that: ¢ is a consequence of S iff ¢ is a consequence of
S1 U So.

In [15] an extensive discussion can be found on the requirements on the elements of an argumentation
setting in order for the acceptability relations to satisfy non-interference (e.g., the deducability relation is
assumed to satisfy the basic relevance criterion from relevance logic [6] and the target function is assumed
to be monotonic (id is monotonic)). In a dynamic setting, we have the following result:

Theorem 2. Let AF(AS-(S)) be such that ASy- = (F,~,id) and that the acceptance relation satisfies non-
interference. A set of formulas T can be credulously and skeptically enforced if there is some AS--consistent
S' C L such that T C CN(S') and S’ | S.

Proof. Let AF(ASy(S)) be an argumentation framework such that the considered acceptance relation sat-
isfies non-interference. Moreover, let S’ be a strongly AS,--consistent set of £-formulas, such that 3’ | S
and let T C CN(S'). Since S’ is strongly ASy--consistent, it follows by Lemma 1 that T is credulously and
skeptically accepted in AF(AS\-(S’)). Since S’ | S and the acceptance relation satisfies non-interference, it
follows that T is credulously and skeptically accepted in AF(AS; (S U S')) as well. O
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Expansion types. Although enforcement in structured argumentation is different from enforcement in
abstract argumentation, the expansion types from [8] (recall Definition 7) are available in structured argu-
mentation as well. Intuitively, the next proposition follows since the structure of the existing arguments
does not change when an argumentation framework is expanded, hence there are no new attacks between
the existing arguments after the expansion.

Proposition 4. Any expansion of an argumentation framework is normal.

Proof. Let AF(AS|-(S)) = (Args,(S), &) be an argumentation framework and suppose that S is expanded
by S’. Let the result be AF(AS; (SUS’)) = (Args™, A*), where Args* = Args, (SUS’) and A* = {(a,b) €
Args* x Args” | a attacks b}. Now suppose that S’ is such that the expansion is not normal. Then there
are a,b € Args, (S) such that (a,b) € A* \ A. However, since a, b € Args, (S), by the definition of attack
(Definition 3) it follows immediately that a attacks b in AF(AS,-(S)) as well. A contradiction. O

The next two remarks discuss conditions on the argumentation setting and framework which ensure
that an expansion is not only normal, but also weak or strong.

Remark 4. In some structured argumentation approaches (e.g., ABA [13] and ASPIC™ [36]) it is possible
to construct arguments that cannot be attacked since these are derived from strict rules and/or premises. On
the one hand, if the framework before the expansion consists of such arguments, the expansion is weak:
the existing arguments are not attacked. On the other hand, if the new arguments that can be created with
the expansion cannot be attacked, the expansion is strong: only the existing arguments can be attacked.

Remark 5. Consider a language £ and a preference relation v for it. If an argumentation framework
AF(ASK(S)) is expanded in such a way that the new arguments are strictly stronger than the existing ones,
the expansion is strong. If the framework is expanded such that the existing arguments are strictly stronger,
the expansion is weak.

Monotonicity. In [8] conditions on the semantics and the expansion type are studied to ensure that the
expansion is monotonic, i.e., that the number of extensions does not decrease and the acceptance status of
the already existing arguments does not change when a framework is expanded. In view of Proposition 1
and Theorem 1 we can show the structured counterpart of [8, Theorem 5].

Proposition 5. Let AF(AS, (S)) be an argumentation framework for a contrapositable ASy = (F,~,id)
and let S' be an expansion. Then, for Sem € {Prf, Stb}:

* |Sem(AF(ASK(S)))| < |Sem(AF(AS-(SU S)))

* V€ € Sem(AF(ASK(S))),3E" € Sem(AF(AS-(SU S'))) such that € C &'

Proof sketch. Let AF(ASy-(S)) be an argumentation framework for a contrapositable AS,- and let S’ be an
expansion. Note that MCS is monotonic: for every T € MCS(S), there is some T C T’ € MCS(s U 8’).

* This follows since |Stb(AF(AS(T)))| < |Prf(AF(AS,-(T)))| for any set of formulas T (i.e., every
stable extension is a preferred extension [27]). Since, [MCS(S)| < [MCS(sUs’)|, |Prf(AF(ASL(S)))]| <
IMCS(S)| (Proposition 1.4) and [IMCS(S U s”)| < |Stb(AF(AS| (S U 8’)))| (Proposition 1.2).

* Let £ € Sem(AF(AS1(S))). Then, by Proposition 1.4 it follows that Supps(£) € MCS(S). Hence,
there is some T € MCS(s U s’) such that Supps(£) C T. By Proposition 1.2 it follows that
Args, (T) € Sem(AF(AS,-(S U 8’))) (recall that every stable extension is also preferred). Since
Supps(€) C T, & C Args, (T). Because £ was arbitrary, this holds for all Prf- and Stb-extensions.
(]

Remark 6. [8, Theorem 5] contains a third item (which serves as the converse of the second item) that in
a structured setting does not hold without further restrictions. Consider again Example 10, we have that

Pri(ar(AScL({p}))) = {Args.({p})}, while Prf(AF(AScL({p, ~p}))) = {Ares_({p}), Args. ({-p})}.
Note that the extension Args, ({—p}) does not extend an extension in the framework before the expansion.
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5 Discussion

Throughout the paper some assumptions were made to show the results. We will discuss some of these in
this section, to illustrate that such restrictions are common in the literature.

In many of the results it was assumed that the target function is id. When looking at well-known
approaches to structured argumentation [11] and the translation of these approaches as provided by [15] it
can be seen that the target function is often id. In ABA and ASPIC™ this is always the case, because of
the translation, and in logic-based argumentation attack rules such as direct defeat and direct undercut are
covered by id.

The first formal results required that the argumentation setting was contrapositive. In, e.g., [32, 36] the
same assumption is made to show, e.g., the rationality postulates from [17] and the relation to reasoning
with maximally consistent subsets. As we consider it essential that these rationality postulates are satisfied,
the argumentation setting would be contrapositive in most settings anyway.

Like in [15], we do not consider a preference ordering on the arguments. However, throughout the
paper some remarks were already made about preference orderings; we plan to formally investigate the use
of preferences in future work.

6 Related Work

Enforcement is an important research direction in the study of dynamics in formal argumentation [24].
In [8] (im)possibility results are shown for the enforcement of extensions, based on abstract principles
of semantics, rather than specific Dung-style semantics. Moreover, conditions under which the addition
of new arguments and attacks between them does not change the acceptance status of already existing
arguments are investigated as well. Other, related questions have been investigated such as extension
removal [9], enforcement by changing the semantics [23] and the minimal change necessary to enforce an
extension [7, 20, 46], all for abstract argumentation frameworks [27].

An enforcement operator for structured argumentation is introduced in [47]. However, the question
of enforcement is still at the argument level: how to adjust the knowledge base such that a certain (set
of) argument(s) becomes a part of some extension. In our paper we are interested in enforcement on the
formula level. This might lead to different conclusion, since, for example, there might be more than one
argument for a certain formula.

In a structured argumentation setting we are not aware of any further research on enforcement. There
is, however, some work on other aspects of dynamics. In [2], an incremental approach to efficiently re-
calculating the acceptability status of literals in updated DeLP programs is introduced, in [35] resolutions
of attacks are studied in the context of ASPIC™, and in [43, 38] the stability of the acceptability status
of a certain formula is investigated. Finally, [14] study concepts related to enforcement in (abstract) ab-
ductive argumentation frameworks and show that these frameworks can be instantiated by abductive logic
programming.

By definition, enforcement is related to belief revision [1, 33]. This relation has been surveyed in,
e.g., [30, 29] where it is argued that formal argumentation and belief revision model two complementary
aspects of human commonsense reasoning. In particular, where belief revision concerns how an agent’s
beliefs can be updated consistently, argumentation is concerned with the process of inferring beliefs, and
the reasons for and against these beliefs [30, p. 355].

In the dynamic argumentation literature, belief revision (-like) postulates have been employed to han-
dle changes in formal argumentation. We mention some general trends. Many dynamic argumentation
approaches that are combined with belief revision postulates are based on a translation of the argumen-
tation framework and notions such as acceptance and Dung-style semantics into logical formulas. For
example, [22] introduce a new logical language called YALLA, [25, 26] use the Dynamic Logic of Propo-
sitional Assignments and [10] introduce so-called Dung-logics (see [24] for a more detailed overview).
Belief revision has also been combined with existing structured argumentation approaches. For example,
[42] adjust the belief revision postulates to account for the structure of ASPIC*-elements, thus modelling
dynamic ASPICT. Furthermore, non-prioritized belief revision is modelled in [41] for a probabilistic vari-
ation of DeLP, and revision in logic-based argumentation is modeled in [34]. Each of these examples
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studies the question how to revise the argumentation framework to obtain good conclusions, which is the
central question in belief revision. In contrast, enforcement as studied in this paper is useful for structured
argumentation applications based on dialogues, which are exactly the kind of applications that have been
implemented at the Dutch National Police and in other application domains, see e.g., [19, 45].

7 Conclusion and Future Work

In this paper we have formulated enforcement for a structured setting: given a set of formulas T, is it
possible to expand the knowledge base such that T becomes credulously or skeptically accepted? We dis-
cussed a real-life application where this question is relevant (Section 2) and argued why enforcement in
structured argumentation should be about formulas (Example 5). For the general approach to structured
argumentation from [15], we have studied a variety of conditions under which a set of formulas T can be
(strictly) credulously/skeptically enforced: (maximal) consistency of the expansion, relevance, and mono-
tonicity of the acceptance relation. Moreover, we have shown that, although the setting and the notion
of enforcement is different from [8], any expansion is normal and satisfies some monotonicity properties.
While some of our results build on existing literature, we have shown that the existing studies on static
argumentation settings can be employed in dynamic settings as well. This suggests that the extensive re-
search on static structured argumentation can be generalized to dynamic setting, which makes the research
better applicable.

As far as we know, this is the first study on enforcement of sets of formulas in a general structured
argumentation setting. This opens up the possibility to further investigate dynamics for specific struc-
tured settings [11, 13, 36], and to extend the investigation of other notions of dynamics from knowledge
representation in formal argumentation.

In addition to extending the current setting with preferences, in future work we will also look into
other approaches to structured argumentation that are not covered by the general setting from [15] (e.g.,
DeLP [31] and claim-augmented argumentation frameworks [28]). Moreover, we will study how a set
of formulas can be enforced. To this end, we will study different aspects of enforcement for structured
argumentation, such as the minimal change necessary to enforce a set of formulas, efficient enforcement,
removal of formulas for enforcement, and enforcing the removal of sets of formulas from the conclusion.
While some of these more computational aspects of enforcement can be studied in the general setting, for
others (e.g., efficient algorithms or complexity studies), we will have to look into specific approaches to
structured argumentation.
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A Proofs Relating Sets of Formulas and Sets of Arguments

We start the appendix by providing full proofs of the results from Section 4.1.

Lemma 1. Ler AS. = (7, id) be an argumentation setting and let S be a strongly AS.(S)-consistent set
of L-formulas. Then: Sem(AF(ASi(S))) = {Args_(S)} for Sem € {Grd, Cmp, Prf,Stb}, and CN(S) is
skeptically accepted in AF(AS-(S)).

Proof. Let AS = (F,%,id) be an argumentation setting and let S be a strongly ASy -consistent set of
L-formulas. We show that Args, (S) is not attacked and is therefore the single extension for Sem €
{Grd, Cmp, Prf,Stb}. Suppose towards a contradiction, that there are a,b € Args,(S) such that a =
(T, $), b = (A,%) and (a,b) € A. Thus there is some § € A such that ¢ € J. By Definition 10, I' U {§}
is AS;-inconsistent. A contradiction, since I' U  C S is strongly AS,--consistent. Hence no argument in
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Args, (S) is attacked. By the definition of Args,_(S):
Concs(Args,_(S)) = {Conc(a) | a € Args,_(S)}
= {0 [ (I',¢) € Args, (S)}
={¢|T'F ¢ forsomeI C s}
={¢|Ir Css.t.TF ¢} =CN(S).

It follows that CN(S) is skeptically accepted. O

When the target function is id the argumentation framework satisfies support closure: given an exten-
sion, any argument that can be constructed from formulas already used in the support set of arguments in
that extension will be part of that extension. This result will be used in the proof of Proposition 1.

Lemma 4. AF(AS,(S)) for ASe = (7, id) satisfies support closure: if Supp(a) C Supps(E) then a € &,
Sfor Sem € {Grd, Cmp, Prf, Stb}.

Proof. Let AF(AS(S)) besuchthat AS; = (F,~,id), let € € Sem(AF(AS(S))) for Sem € {Grd, Cmp, Prf, Stb}
and let a € Args, (S) such that Supp(a) C Supps(€). If a is not attacked, by the completeness of & it
follows that @ € £. Now suppose that there is some b € Args, (S) such that b attacks a. Then there is
some v € Supp(a) = Supp(a) such that Conc(b) € 7. By assumption, there is some ¢ € £ such that
~v € Supp(c) as well. Hence b attacks c. Since ¢ € &, there is some d € £ such that d defends c against the

attack from b and therefore defends a against the attack from b as well. Again by the completeness of £,
a€é. O

In addition to the above lemma, we will also use the following remark, sometimes implicitly.

Remark 7. Let AS = (,~,id) be an argumentation setting, S a set of £-formulas and let s’ € CS(S).
Then there is some T € MCS(S) such that s" C T.

Proposition 1. Let AF(AS,(S)) be such that AS(S) = (F,%,id) is contrapositable and let Sem €
{Cmp, Prf, Stb}:

1. if T € CS(S), then there is some T' D T such that Args_(T') € Sem(AF(AS1(S)));
2. if T € MCS(S), then Args,(T) € Sem(AF(AS-(S)));
3. if€ € Sem(AF(AS-(9))) then Supps(E) € CS(S);
4. if € € Prf(AF(ASK(S))) then Supps(E) € MCS(9) .
Proof. Let AF(ASy (S)) be suchthat AS; (S) = (I, 7, id) is contrapositable and let Sem € {Cmp, Prf, Stb}.

1. Let T” € CS(S). Then, by Remark 7, there is some T’ C T such that T € MCS(S). By Lemma 1
it follows that Args, (T) is conflict-free. It can be shown that Args, (T) is stable (and therefore
preferred and complete as well).

Suppose that there is some b = (A, §) € Args, (S) \ Args,_(T). Then there is some ¢ € A\ T. By
assumption, T is maximal strongly ASy (S)-consistent. Therefore T U {¢} is not strongly AS(S)-
consistent. From which it follows that there is some I' C T U {¢} and some v € T such that
L\ {7}« forsome 7y’ € 7. If y = ¢, theny' € pand a = (I'\ {¢},7') € Args_(T). If v # ¢,
then ¢ € T'\ {7} (since T\ {¢} C T), by contraposition I \ {¢} I ¢’ for ¢’ € ¢. Then also a =
(T\ {9}, ¢') € Args,(T). In both cases a attacks b. It follows that Args, (T) € Stb(AF(AS(S))).
Since any stable extension is also preferred and complete Args, (T) € Sem(AF(ASy-(S))) for Sem €
{Cmp, Prf, Stb}.

2. This follows immediately by the proof of Item 1.

3. Now suppose that £ € Sem(AF(AS-(S))). Let T = Supps(€) and suppose that T ¢ CS(S). Then
there is some I' C T and some v € T such that "\ {y} + 4/ where v/ € 7. By Lemma 4,
b= (T'\{v},7') € £. However, since v € T, there is some a € £ such that v € Supp(a). Hence b
attacks a. A contradiction to the conflict-freeness of £. Thus T is strongly AS;-(S)-consistent.
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4. Let £ € Prf(AF(ASK(S))). By Item 3 Supps(€) is strongly ASy--consistent. Suppose that Supps(E)
is not maximal strongly AS; (S)-consistent. Then, by Remark 7, there is some S O T D Supps(€)
such that T is maximal strongly AS, (S)-consistent. By Item 2, Args, (T) € Prf(AF(ASi(S))).
However, £ C Args, (T). A contradiction. Hence Supps(€) = T. O

B Proofs Enforcing Formulas

In this appendix full proofs of the results from Section 4.2 are collected.

While Free(S) is not necessarily strongly consistent [16], from Proposition 1 it is known that the support
set of the grounded extension is strongly consistent.

Lemma 2. Let AS. = (-, id) be an argumentation setting that is contrapositable and let S be a set of
L-formulas. Then: Grd(AF(AS(S))) C Args_ (Free(S)).®

Proof. Let ASp = (F,,id) be an argumentation system that is contrapositable and let S be a set of £-
formulas. Moreover, let &g € Grd(AF(AS(S))) be the grounded extension and a € Egq. Suppose,
towards a contradiction, that there is some v € Supp(a) such that v ¢ Free(S). Then there is some
T € MCS(S) such that v ¢ T. By Proposition 1.2, Args,_(T) € Stb(AF(ASi(S))). Since v ¢ T,
a ¢ Args, (T). However, since every stable extension is complete, a ¢ Egq. A contradiction. O

Theorem 1. Let AF(AS(S)) be such that ASy- = (i, id) is contrapositable and let T C L be the set that
should be enforced. Then:

1. If T can be skeptically enforced then there is some S’ C L such that T C CN(S*) and S* C
Free(SU ') for Sem € {Grd, Cmp};

2. T can be skeptically enforced iff there is some S' C L such that for every S* € MCS(sU §'),
T C CN(S*) for Sem € {Prf,Stb};

3. Tcan be strictly skeptically enforced iff there is some S' C L such that for every S* € MCS(sU S'),
CN(T) = CN(S*) for Sem € {Prf, Stb};

4. T can be credulously enforced iff there is some S C L and some S* € CS(S U S') such that
T C CN(S*) for Sem € {Cmp, Prf,Stb};

5. Tcan be strictly credulously enforced iff there is some S’ C L such that there is some S* € MCS(SU
S') such that CN(T) = CN(S*) for Sem € {Prf,Stb}.

Proof. Let AF(ASK(S)) be such that AS. = (F,~,id) and let T C L be a set of formulas. Consider each
item, in both directions:

1. This follows immediately from Proposition 2.

2. (=) Suppose that T can be skeptically enforced by expanding S with S’. Then, for each extension

& € Sem(AF(asS(s U 8'))), T C Concs(€). By Proposition 1.2 it follows immediately that for
any S* € MCS(s U 8’), T C CN(s*), since Args, (S*) € Sem(AF(AS, (s U S’))) and Concs(€) C
CN(Args,(s*)).
(<) Suppose that T cannot be skeptically enforced, then for each s’ C L there is some £ €
Sem(AF(ASi-(S U 8’))) such that for some ¢ € T, ¢ ¢ Concs(E). By Proposition 1.4 Supps(€) €
MCS(s U s’). Hence, for any s’ C L, there is some S* € MCS(S U s’) such that for some ¢ € T,
6 ¢ CN(s").

Free(s) is the set of L-formulas from S that is part of every T € MCS(S): Free(S) = MNremes(s) T-
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3. (=) Suppose that T can be strictly skeptically enforced by expanding the framework with S’. Then
for any extension £ € Sem(AF(AS (s U S’))), CN(T) = Concs(&). Like for Item 2, by Proposi-
tion 1.2 it follows that for all s* € MCS(s U s’), CN(T) = CN(s*).

(<) Now assume that T cannot be strictly skeptically enforced. If T cannot be skeptically enforced
either, it follows by the previous item that for each s’ C L, there is some S* € MCS(s U S’) such
that for some ¢ € T, ¢ ¢ CN(S*). If T can be skeptically enforced, then for each S C £ such that
there is some S* € MCS(sUS*) with T C CN(S*) (note that also CN(T) C CN(S*)), there is some
¢ € CN(s*) \ CN(T). Hence CN(T) # CN(S*) for any S’ C £ and any S* € MCS(S U g’).

4. (=) Suppose that T can be credulously enforced. Then there is some S’ C L, such that there is an
extension £ € Sem(AF(AS)- (s U s’))) for which T C Concs(£). Note that T C CN(Supps(€)). By
Proposition 1.3 it follows that Supps(&) is consistent.

(<) Suppose that there is some S’ C £ and some S* € CS(s U 8’) such that T C CN(S*). By
Proposition 1.1 there is some S* C S# such that Args, (%) € Sem(AF(AS(S U 8’))). Since
T C CN(s*), for each ¢ € T there is some I' C S* C S# such that I' - ¢. Therefore (I',¢) €
Args, (S#) and hence T C Concs(Args, (S#)).

5. (=) Assume that T can be strictly credulously enforced by some S’ C L. Then there is some
& € Sem(AF(ASi(S U s’))) such that Concs(€) = CN(T). By Proposition 1.4 it follows that
Supps(€) € MCS(s U s’). Since CN(Supps(E)) = Concs(E) = CN(T), it follows that there is
some S* € MCS(S U 8’) such that CN(T) = CN(s*).

(<) Now assume that there is some S’ C £ and some S* € MCS(SUS’) such that CN(T) = CN(S*).
By Proposition 1.2, Args, (S*) € Stb(AF(ASr(S U 8’))). Since Concs(Args, (S*)) = CN(s*) =
CN(T) it follows that T can be strictly credulously enforced by expanding the framework with s’.  [J

Proposition 3. Let AF(AS,-(S)) be an argumentation framework for AS. = (.-, id) and suppose that the
considered acceptance relation is monotonic. Then:

o Any formula ¢ € L, such that T = ¢ for an ASy-consistent I' C L, can be enforced by expanding S
with I'; and

o Let S' be an ASy-consistent set of L-formulas, such that T C CN(S"). Then T can be enforced by
expanding the framework with S'.

Proof. Let AF(AS-(S)) be an argumentation framework for AS; = (I, ,id) with a monotonic acceptance
relation. Consider both items:

* Suppose that I' - ¢ for some strongly AS -consistent I' C £ and that ¢ should be enforced. By
Lemma 1 it follows that ¢ is accepted in AF(ASy (I")). Since acceptance is assumed to be monotonic,
¢ is accepted in AF(AS- (S UT)) as well.

* Let s’ be a strongly AS, -consistent set of of £ formulas such that T C CN(S’) and suppose that
T has to be enforced. Since S’ is strongly ASy(S)-consistent, by Lemma 1 CN(S’) is accepted
in AF(AS,-(S’)). Since acceptance is assumed to be monotonic it follows that T is accepted in
AF(ASi(SUS’)). Hence T is enforced by the expansion of S'. O

Proposition 5. Let AF(AS-(S)) be an argumentation framework for a contrapositable AS- = (-, id)
and let S' be an expansion. Then, for Sem € {Prf, Stb}:

* |Sem(AF(AS-(S)))| < |Sem(AF(AS-(SU S')))

* V& € Sem(AF(AS-(S))),3E’ € Sem(AF(AS-(SU S"))) such that £ C E'.

Proof. Let AF(AS(S)) be an argumentation framework for AS;- = (7, id) and let S’ be an expansions.
Consider each of the items:
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* Note that, given the definition of strong consistency (Definition 10), [MCS(S)| < |[MCS(s U s')|.
By Proposition 1.4 it is known that |Prf(AF(AS(S)))| < |[MCS(S)|. By Proposition 1.2 it is known
that [IMCS(s U s’)] < |Stb(AF(ASK(S U s’)))|. Since any stable extension is also a preferred
extension [27] and therefore |Stb(AF(AS|-(T)))| < |Prf(AF(ASK(T)))| for any set of formulas T, it
follows that |Stb(AF(ASK(S)))| < IMCS(S)| and IMCS(sUS’)| < |Prf(AF(ASK(SUS’)))| as well.
It therefore follows that |Sem(AF(AS(S)))| < |Sem(AF(ASi(S U S’)))|, for Sem € {Prf, Stb}.

e Let £ € Sem(AF(ASK(S))). Then, by Proposition 1.4 it follows that Supps(£) € MCS(S). Hence,
there is some T € MCS(S U s’) such that Supps(£) C T. By Proposition 1.2 it follows that
Args, (T) € Sem(AF(AS,-(S U 8))) (recall that every stable extension is also preferred). Since
Supps(€) C T, & C Args, (T). Because £ was arbitrary, this holds for all Prf- and Stb-extensions.

O
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