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Abstract

As AI systems are increasingly applied in real-life situations, it is essential that such
systems can give explanations that provide insight into the underlying decision models and
techniques. Thus, users can understand, trust and validate the system, and experts can verify
that the system works as intended. At the Dutch National Police several applications based on
computational argumentation are in use, with police analysts and Dutch citizens as possible
users. In this paper we show how a basic framework of explanations aimed at explaining
argumentation-based conclusions can be applied to these applications at the police.

1 Introduction

Recently explainable AI (XAI) has received much attention, mostly directed at new techniques
for explaining decisions of machine learning algorithms [21]. However, explanations also play an
important role in (symbolic) knowledge-based systems [12]. One area in symbolic AI which has
seen a number of real-world applications lately is formal or computational argumentation [1].
Two central concepts in formal argumentation are abstract argumentation frameworks [7] – sets
of arguments and the attack relations between them – and structured or logical argumentation
frameworks [2] – where arguments are constructed from a knowledge base and a set of rules and the
attack relation is based on the individual elements in the arguments. Common for argumentation
frameworks, abstract and structured, is that we can determine their extensions, sets of arguments
that can collectively be considered as acceptable, under different semantics [7].

The Dutch National Police employs several applications based on structured argumentation
frameworks (a variant of ASPIC+ [20]). One such application concerns complaints by citizens
about online trade fraud (e.g., a product bought through a web-shop or on eBay turns out to be
fake). The system queries the citizen for various observations, and then determines whether the
complaint is a case of fraud [3, 19]. Another related example is a classifier for checking fraudulent
web-shops, which gathers information about online shops and thus tries to determine whether
they are real (bone fide) or fake (mala fide) shops [18]. These applications are aimed at assisting
the police at working through high volume tasks, leaving more time for tasks that require human
attention.

Argumentation is often considered to be inherently transparent and explainable. A complete
argumentation framework and its extensions is a global explanation [8]: what can we conclude from
the model as a whole? Such global explanations can be used by argumentation experts to check
whether the model works as intended. However, as we have noticed when deploying argumentation
systems to be used by lay-users (e.g., citizens, police analysts) at the police, more natural and
compact explanations are needed. Firstly, we need ways to explain the (non-)acceptability of indi-
vidual arguments, that is, local explanations [8] for particular decisions or conclusions. Secondly,
explanations should be compact, and contain only the relevant arguments which are needed in
order to draw a conclusion. Finally, explanation should be tailored to the receiver. For example,
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in the case of online trade fraud, for a citizen the system should return only the observations
provided in the report (“this is presumably a case of fraud because you provided the following
facts in your report:...”), but for a police analyst the system should also show which (legal) rules
were applied and why there were no exceptions in this case (“this is presumably (not) a case of
fraud because the following legal rules are not applicable:...”).

In this paper, we show how a variety of different local explanations can be derived from an
argumentation framework and we provide motivations for the design options. We start with the
basic explanations from [4], which are based on concepts from formal argumentation (Section 3.1).
We then discuss how explanations can be selected based on sufficiency and necessity (Section 3.2)
and how our explanations can be used to create contrastive explanations (i.e., “why P rather than
Q”) (Section 3.3). Each of the discussed explanations is based on underlying formal definitions
that we cannot introduce here in full detail. We refer the interested reader to [4], [6] and [5]
respectively.

Our informal exploration has clear ties to recent more formal work on methods to derive
explanations for specific conclusions [9, 10, 11, 13, 22]. We apply and extend the framework from [4]
here for several reasons. Often, explanations are only defined for a specific semantics [9, 10] and
can usually only be applied to abstract argumentation [10, 13, 22],1 while our framework can
be applied on top of any argumentation setting (structured or abstract) that results in a Dung-
style argumentation framework. Furthermore, when this setting is a structured one based on a
knowledge base and set of rules (like ASPIC+ or logic-based argumentation [2]), the explanations
can be further adjusted (something which is not considered at all in the literature). Moreover,
explanations from the literature are usually only for acceptance [9, 13] or non-acceptance [10, 22],
while with this framework both acceptance and non-acceptance explanations can be derived in a
similar way.2 Finally, to the best of our knowledge, this is the first approach to local explanations
for formal argumentation in which necessary, sufficient and contrastive explanations are considered.

The paper is structured as follows: in the next section we recall some of the most basic and
important concepts from formal argumentation. Then, in Section 3, the internet trade fraud
scenario and the different possible explanations for the derived conclusions are discussed. We
conclude in Section 4.

2 Argumentation Preliminaries

We focus in this paper on the intuition behind the explanations introduced in [6, 4] and the
motivation for some of the choices that can be made in the derivation of these explanations.
We therefore keep the formal definitions and results limited, leaving more space for an informal
discussion.

An abstract argumentation framework (AF) [7] is a pair AF = 〈Args,A〉, where Args is a set of
arguments and A ⊆ Args×Args is an attack relation on these arguments. An AF can be viewed
as a directed graph, in which the nodes represent arguments and the arrows represent attacks
between arguments (see, e.g., Figure 1 on page 5). Dung-style semantics can be applied to an AF,
to determine what combinations of arguments can collectively be accepted.

Definition 1. For AF = 〈Args,A〉, A ∈ Args attacks B ∈ Args if (A,B) ∈ A and S ⊆ Args
attacks B if there is some C ∈ S such that (C,B) ∈ A; A defends B if A attacks an attacker of
B and S defends B if it attacks every attacker of B;3 S is conflict-free if there are no A1, A2 ∈ S
such that (A1, A2) ∈ A; and S is admissible if it is conflict-free and it defends all of its arguments.

1These explanations do not account for the sub-argument relation in structured argumentation. For example,
in structured argumentation one cannot remove specific arguments or attacks without influencing other argu-
ments/attacks.

2An exception to this might be [11]. However, we consider our framework more easily applicable, since it returns
sets of arguments rather than sets of dialectical trees, which might contain many arguments.

3In [7], attack and defense are defined from a set of arguments to an argument. In this paper we will mainly rely
on attack and defense between arguments, since we are interested in the arguments that defend a certain argument,
rather than whether that argument is defended by the set of arguments.
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A ⊆-maximal admissible set is a preferred extension (Prf) of AF . The set of all preferred
extensions of AF will be denoted by Prf(AF).

There are different ways in which the conclusions can be drawn from the extensions of a frame-
work. At the police, when drawing a definite conclusion (e.g., someone is guilty) it is important
to be completely certain. This means that the application uses a very skeptical approach towards
drawing conclusions: only arguments that are part of every complete set are considered conclusions
(i.e., the grounded semantics from [7] is used). When considering whether there is the possibility
of the conclusion (e.g., it could be a case of fraud), a more credulous approach can be taken.
We follow the latter approach here: an argument that is part of some preferred extension can be
considered a conclusion or accepted.

For example, in the AF from Figure 1 we have that all arguments are accepted (while under
the grounded semantics only C1 would be accepted). In particular, we have the following preferred
extensions: {A1, A2, A3}, {A1, A2, A5}, {A1, A3, A4}, and {A3, A4, A6}.

In abstract argumentation, as defined above, the arguments are abstract entities and the attack
relation is pre-defined. In contrast, in structured argumentation, the arguments are derived from
a knowledge base and a set of rules and the attack relation is based on the structure of the
arguments. Each of the applications that is in use, is based on a variation of ASPIC+, one of the
best-known approaches to structured argumentation [20]. In particular, the notions of a language,
axioms and defeasible rules are taken from ASPIC+. See [19] for the formal details.4 In this paper
we only provide the preliminaries that are necessary for the explanations. As we will show in the
next section, the AF from Figure 1 is based on a structured setting.

Argumentation frameworks in ASPIC+ are constructed from an argumentation theory : AT =
〈AS,K〉, where AS = 〈L,R, n〉, an argumentation system, is a triple of a formal language, a set
of defeasible rules and a naming function for these rules, and K = Kn ∪ Kp is the knowledge
base containing the disjoint sets of axioms (Kn) and ordinary premises (Kp). Arguments are
constructued from an argumentation theory as follows:

Definition 2. An argument A on the basis of an argumentation theory AT = 〈AS,K〉, where
AS = 〈L,R, n〉 is:

• φ if φ ∈ K, where Prem(A) = Sub(A) = {φ}, Conc(A) = φ and TopRule(A) = undefined;

• A1, . . . , An ⇒ ψ, ifA1, . . . , An are arguments such that there is a rule Conc(A1), . . . ,Conc(An)⇒
ψ ∈ R.

Prem(A) = Prem(A1)∪. . .∪Prem(An), Sub(A) = Sub(A1)∪. . .∪Sub(An)∪{A}, Conc(A) = ψ,
TopRule(A) = Conc(A1), . . . ,Conc(An) ⇒ ψ additionally, we denote Ant(TopRule(A)) =
{Conc(A1), . . . ,Conc(An)}. Moreover, where S is a set of arguments Prem(S) =

⋃
{Prem(A) |

A ∈ S}.

Attacks between arguments are based on the premises and conclusions of these arguments.

Definition 3. An argument A attacks an argument B iff, (where φ = −ψ iff φ = ¬ψ or ψ = ¬φ)

• Conc(A) = ¬n(di), where there is some B′ ∈ Sub(B) such that TopRule(B′) = di, it denies
a rule; or

• Conc(A) = −φ, where there is some B′ ∈ Sub(B) such that Conc(B′) = φ, it denies a
conclusion; or

• Conc(A) = −φ, for some φ ∈ Prem(B) \ Kn, it denies a premise.

Dung-style semantics can be applied to argumentation frameworks based on argumentation
theories as defined in Definition 1. We will say that a formula φ in an argumentation framework

4The corresponding demo of [19], demonstrating the argumentation-based part of the application, is available
at https://nationaal-politielab.sites.uu.nl/estimating-stability-for-efficient-argument-based-inquiry/.
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AF(AT) is accepted if there is some E ∈ Prf(AF(AT)) with A ∈ E such that Conc(A) = φ and
non-accepted if there is some E ∈ Prf(AF(AT)) such that there is no A ∈ E with Conc(A) = φ.

These basic preliminaries on formal argumentation are enough to illustrate the different pos-
sibilities for explaining argumentation-based conclusions derived from the internet trade fraud
application at the police.

3 Deriving Explanations

Suppose that the following knowledge base is provided: a citizen has ordered a product through
an online shop, paid for it and received a package. However, it is the wrong product, it seems
suspicious as if it might be a replica, rather than a real product. Yet an investigation cannot find
a problem with the product. Still, the citizen wants to file a complaint of internet trade fraud.

While the citizen provides the information from the described scenario, the system constructs
further arguments from this, based on the Dutch law.5 In particular, the following rules are
applied:

R1 If the complainant paid then usually the complainant delivered ;

R2 If the wrong product was received then usually this is not a case of fraud ;

R3 If the wrong product was received then usually the counter party has delivered ;

R4 If the product seem suspicious then usually the product is fake;

R5 If the product is fake then usually the counter party did not deliver ;

R6 If an investigation shows that there is no problem with the product then usually the product
is not fake;

R7 If the complainant delivered and the counter party did not deliver it is usually a case of
fraud.

From this we obtain arguments for:6

C1 : the complainant paid + R1 ⇒ the complainant delivered
A1 : the wrong product was received + R2 ⇒ it is not a case of fraud
A2 : the wrong product was received + R3 ⇒ the counter party has delivered
A3 : the product seems suspicious + R4 ⇒ the product is fake
A4 : A3 + R5 ⇒ the counter party did not deliver
A5 : an investigation shows no problems + R6 ⇒ the product is not fake
A6 : C1 + A4 + R7 ⇒ it is a case of fraud.

Note that the argument A5 which has conclusion not fake will attack any argument with the
conclusion fake (and vice versa), as well as any argument based on the conclusion fake (i.e., A5

and A3 attack each other and A5 attacks A4 and A6 because they have fake as a sub-conclusion).
The graphical representation of the AF, which we will refer as AF1 = 〈Args1,A1〉 can be found
in Figure 1.

As the aim of the system is to determine whether a particular situation is a case of fraud, we
will focus here on the arguments A1 (not fraud) and A6 (fraud). Note that, from an argumentative
perspective, both arguments can be accepted, though not simultaneously. For A1 this is the case
since A1 attacks any argument by which it is attacked (i.e., (A1, A6) ∈ A). For A6 additional
conclusions have to be accepted as well. In particular, one can accept the argument for fraud when
also accepting the arguments for the counter party did not deliver (A4) and that the product is

5In order to make the argumentation framework and corresponding explanations more interesting the rules that
are applied here are only inspired by the law. The real application is based on slightly different rules [19].

6We do not state the arguments based on the knowledge base explicitly, since these neither attack other arguments
nor can be attacked themselves and do therefore not influence the acceptability of other arguments.

4



C1 A1 A2A6 A4 A5 A3

Figure 1: Graphical representation of the argumentation framework AF1 constructed based on
information provided in the complaint.

fake (A3). This follows since {A3, A4, A6} is a preferred extension and A3 and A4 attack attackers
of A6 that A6 would otherwise not be defended against. In what follows we will consider for both
A1 and A6 explanations for why one could (not) accept them.

3.1 Basic explanations

In [4] skeptical and credulous acceptance and non-acceptance explanations for abstract and struc-
tured argumentation were introduced. These explanations are defined in terms of two functions:
D, which determines the arguments that are in the explanation and F, which determines what
elements of these arguments the explanation presents. For the basic explanations in this pa-
per, we instantiate D with the following functions, let A ∈ Args and E ∈ Prf(AF) for some AF
AF = 〈Args,A〉:

• Defending(A) = {B ∈ Args | B defends A} denotes the set of arguments that defend A and
Defending(A, E) = Defending(A) ∩ E denotes the set of arguments that defend A in E .

• NotDefAgainst(A, E) = {B ∈ Args | B attacks A and E does not defend Aagainst this attack}
denotes the set of all attackers of A that are not defended by E .

The explanations are defined for arguments and formulas.

Definition 4. Let AF = 〈Args,A〉 be an AF and suppose that A ∈ Args [resp. φ ∈ L] is accepted.
Then:

Acc(A) = {Defending(A, E) | E ∈ Prf(AF) and A ∈ E}.
Acc(φ) = {F(Defending(A, E)) | E ∈ Prf(AF) such that A ∈ E and Conc(A) = φ}.

An acceptance explanation, for an argument or formula, contains all the arguments that defend
the argument (for that for that formula) in an extension. If it is an explanation for a formula
explanation, the function F can be applied to it.

Definition 5. Let AF = 〈Args,A〉 be an AF and suppose that A ∈ Args [resp. φ ∈ L] is
non-accepted. Then:

NotAcc(A) =
⋃

E∈Prf(AF) and A/∈E

NotDefAgainst(A, E).

NotAcc(φ) =
⋃

A∈Args and Conc(A)=φ

⋃
E∈Prf(AF) and A/∈E

F(NotDefAgainst(A, E)).

A non-acceptance explanation contains all the arguments that attack the argument [resp. an
argument for the formula] and to which no defense exists in some preferred extension. For a
formula F can be applied again.

The function F can be instantiated in different ways. We recall here some of the variations
introduced in [4]. These will be motivated in the discussions on the different explanations.

• F = id, where id(S) = S. Then explanations are sets of arguments.

• F = Prem. Then explanations only contain the premises of arguments (i.e., knowledge base
elements).
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• F = AntTop, where AntTop(A) = 〈TopRule(A),Ant(TopRule(A))〉. Then explanations con-
tain the last applied rule and its antecedents.

• F = ConcSub, where ConcSub(A) = {Conc(B) | B ∈ Sub(A), Conc(B) /∈ K ∪ {Conc(A)}}.
Then the explanation contains the sub-conclusions that were derived in the construction of
the argument.

We can now turn to a discussion on explanations for the (non-)acceptance of (not) fraud.

It is a case of fraud (acceptance of A6/non-acceptance of A1). The basic explanation
here is that A6 can be accepted, when A3 and A4 are accepted as well. In terms of the conclusions
of the arguments, we say that it is a case of fraud (A6), because the product is fake (A3) and the
counter party did not deliver (A4). When considering the variations of F, further explanations can
be considered. For example, it is a case of fraud, because:

• the complainant delivered (C1) and the counter party did not deliver (A4) and there is a
rule (R7) that states that from these conclusions it can be derived that it is a case of fraud
(A6), i.e., F = AntTop. Such an explanation can be used by an analyst at the police, who is
familiar with the rules and wants to understand what parts of the law were applied.

• the complainant paid and the product seems suspicious, i.e., F = Prem. At the moment,
the system returns this type of explanation, which can be used by the complainant, to
understand what parts of the report made the system derive this conclusion.

• the complainant delivered (C1), the counter party did not deliver (A4) and the product is fake
(A3), i.e., F = ConcSub. Explanations like this provide insight into the reasoning process
of the system: it shows the sub-steps that were taken. It might be useful for an analyst at
the police, who wants more insight into the reasons than only the last step, but also for the
complainant, who might not be convinced by an explanation that only contains information
provided in the complaint itself.

Similar explanations can be given for not(it is not a case of fraud), i.e., that A1 is not accepted.
This follows since the main reason that A1 cannot be accepted is the fact that A6 is accepted.

It is not a case of fraud (acceptance of A1/non-acceptance of A6). While A1 can be
explained by the acceptance of A1 (since it can defend itself against the attack from A6), additional
arguments defend A1 as well (i.e., A2 and A5 defend A1 against the attack from A6 as well). To
give an overview of the possible explanations, we consider here the most extensive set of arguments:
A1, A2 and A5. In terms of the conclusions of the arguments, it follows that it is not a case of
fraud, because the counter party has delivered and the product is not fake. Similarly as above, we
can also consider other explanations based on elements of arguments: It is not a case of fraud,
because:

• the wrong product was delivered and there is a rule (R2) that states that usually, when
the wrong product is delivered, it is not a case of fraud, i.e., F = AntTop. Note that this
explanation is the same, whether we consider A1 to be an explanation for its own acceptance,
or the arguments A2 and A5 are considered as well.

• the wrong product was delivered and an investigation shows that there is no problem with
the product, i.e., F = Prem. If A5 is not a part of the explanation, then this explanation
only contains the information that the wrong product was delivered.

• the counter party has delivered (A2) and the product is not fake (A5), i.e., F = ConcSub.
Note that, in the case A1 is its own acceptance explanation, no sub-conclusions are derived
in the process.
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Like in the case above, the explanations that it is not(a case of fraud) is similar to the explana-
tions for not a case of fraud. This follows since the argument for a case of fraud (A6) is attacked
by each of the arguments considered here (i.e., A6 is attacked by A1, A2 and A5).

The suggested explanations above are not too extensive for the given example. However, a rule
might have many antecedents, a conclusion might be based on many knowledge base elements or
the derivation might be long, resulting in many sub-conclusions. It is therefore useful to consider
how we can reduce the size of explanations. To this end, it has been argued that humans select
their explanations in a biased manner. Selection happens based on e.g., simplicity, generality,
robustness – see [17] for an overview on findings for the social sciences on how humans come to
their explanations and how this could be applied in artificial intelligence. In the next section we
will consider two ways of reducing the size of explanations. Given the space restrictions and since
the basic explanations were similar for acceptance and non-acceptance, we only discuss acceptance
explanations.

3.2 Necessity and Sufficiency

Necessity and sufficiency in the context of philosophy and cognitive science are discussed in, for
example, [14, 15, 23]. Intuitively, an event Γ is sufficient for ∆ if no other causes are required for
∆ to happen, while Γ is necessary for ∆, if in order for ∆ to happen, Γ has to happen as well.7

Sufficiency. In terms of arguments, one could say that a set of arguments is sufficient for the
acceptance of some argument, if by accepting those arguments the argument can also be accepted
(i.e., that the set of arguments defends the argument against all its attackers). For example, in
the cases above:

• it was already mentioned that the acceptance of A1 (that it is not a case of fraud) can be
explained by the argument itself, but also by {A1, A2}, by {A2, A5} and by {A1, A2, A5}.
Each of these sets is sufficient for the acceptance of A1. If one were interested in minimal
sufficiency, then the argument itself would be enough.

• for the argument A6 (that it is a case of fraud) the arguments A3 and A4 have to be accepted.
Thus there is only one sufficient set: {A3, A4, A6}.

Formally, given AF = 〈Args,A〉 and accepted argument A ∈ Args:

• S ⊆ Args is sufficient for the acceptance of A if for each B ∈ S, there is an attack-path from
B to A,8 S is conflict-free and S defends A against all its attackers.

We denote by Suff(A) = {S ⊆ Args | S is sufficient for the acceptance of A} the set of all sufficient
sets of arguments for the acceptance of A. With this sufficient explanations can be defined:

Definition 6. Let AF = 〈Args,A〉 be an AF and suppose that A ∈ Args is accepted. Then:
Acc(A) ∈ Suff(A).

For minimally sufficient explanations Acc(A) ∈ min Suff(A), where minimality can be taken
w.r.t. ⊆ or the number of arguments in a set.

The resulting explanations for AF1 are as described before the formal definitions.
When the structure of the arguments is known we can again look at explanations in terms of

the elements of the arguments. Note that when explanations should contain minimal sufficient sets
of elements (e.g., minimal sufficient sets of premises or sub-conclusions) one should not simply take
the elements of the minimal sufficient set of arguments, but rather compare the sets of elements
obtained from each sufficient set and compare those sizes.

7See [6] for the technical details, in this paper we focus on the application of necessary and sufficient explanations.
8There is an attack path from B to A if there are C1, . . . , Ck ∈ Args such that

(B,C1), (C1, C2), . . . , (Ck−1, Ck), (Ck, A) ∈ A.
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Definition 7. Let AF(AT) = 〈Args,A〉 be an AF, based on an argumentation theory AT and
suppose that φ ∈ L is accepted. Then:

Acc(φ) ∈
⋃
{F(Suff(A)) | A ∈ Args and Conc(A) = φ}.

Acc(φ) ∈ min
⋃
{F(Suff(A)) | A ∈ Args and Conc(A) = φ}.

In our example we have that:

• receiving the wrong product is sufficient for that it is not a case of fraud, if F = Prem and,
combined with the rule that usually when the wrong product is received it is not a case of
fraud, when F = AntTop.

• the premises that the complainant paid and that the product seems suspicious are sufficient
for that it is a case of fraud. When F = AntTop, the rules from A3 (if the product seem
suspicious then usually the product is fake), A4 (if the product is fake then usually the counter
party did not deliver) and A6 (if the complainant delivered and the counter party did not
deliver it is usually a case of fraud) form the explanation, together with their antecedents
that the product seems suspicious, the product is fake, the complainant delivered and the
counter party did not deliver.

Given the structure of AF1, there is not much difference between the basic explanations and
sufficient explanations. Therefore, we introduce the following example, this time not based on a
scenario from the police.

Example 1. Let AT2 = 〈AS2,K2〉, where the rules in AS2 are such that, with K2 = {r, s, t, v}, the
following arguments can be derived:9

A : s, t
d1⇒ u B : p,¬q d2⇒ ¬n(d1) C : r, s

d3⇒ q

D : v
d4⇒ ¬q E : r, t

d5⇒ ¬p F : v
d6⇒ p

See Figure 2 for a graphical representation of the correspond AF AF2. Note that, like for AF1,
all arguments can be accepted.

A BCD E F

Figure 2: Graphical representation of the abstract argumentation framework AF2.

On an abstract level, in order to accept A either C or E should be accepted as well. To accept
B, one has to accept both D and F . Sufficient explanations for the acceptance of A are {C}, {E},
{C,E}, but also {C,F} and {D,E} (since these still include C resp. E). Minimally sufficient
explanations are {C} and {E} and {D,F} is the only (minimally) sufficient explanation for the
acceptance of B.

When looking at the structure of the arguments, taking F = Prem, we have that {r, s}, {r, t}
and {r, s, t} are some of the sufficient sets for the acceptance of u and {v} is sufficient to accept
an exception to the rule d1.

Necessity. In terms of arguments, an argument can be understood as necessary if without that
argument, the considered argument could not be accepted. For AF1, the (minimal) sufficient
sets of arguments are also the necessary arguments: A1 is the only necessary argument for the
acceptance of A1, while there are three arguments necessary for the acceptance of A6: A3, A4 and
A6.

Formally, given an AF AF = 〈Args,A〉 and A ∈ Args an accepted argument:

9We ignore again the arguments based on the elements of K2.
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• B ∈ Args is necessary for the acceptance of A if there is an attack-path from B to A and if
B /∈ S for some admissible set S ⊆ Args, then A /∈ S.

We denote by Nec(A) = {B ∈ Args | B is necessary for the acceptance of A} the set of all ar-
guments that are necessary for the acceptance of A. With this necessary explanations can be
defined:

Definition 8. Let AF = 〈Args,A〉 be an AF and suppose that A ∈ Args is accepted. Then:
Acc(A) = Nec(A).

For an illustration of the difference between sufficiency and necessity, consider the argument
A2. Then {A2} is sufficient for its own acceptance, but {A5} is also sufficient for its acceptance.
Therefore, there is no argument that is necessary for the acceptance of A2 (see also Proposition 2).

Similar reasoning as in the case of sufficiency applies to necessary explanations based on the
elements of the arguments. One can collect premises, rules and sub-conclusions from the necessary
arguments. However, in terms of elements we can be more detailed. For this we need the following
results.

Proposition 1. Let AF = 〈Args,A〉 and let A ∈ Args be accepted. Then Acc(A) = ∅ iff there is
no B ∈ Args such that (B,A) ∈ A, where Acc can be defined as in Definition 4 or 6.

Proposition 2. Let AF = 〈Args,A〉 and let A ∈ Args be accepted. Then Nec(A) = ∅ if⋂
Suff(A) = ∅.

While, in view of the above results, a necessary explanation for arguments might be empty,
one could still collect necessary premises, rules and sub-conclusions. We therefore define:

Definition 9. Let AF(AT) = 〈Args,A〉 be an AF, based on an argumentation theory AT and
suppose that φ ∈ L is accepted. Then:

Acc(φ) =
⋂
{F(Suff(A)) | A ∈ Args and Conc(A) = φ}.

To illustrate the difference between necessary and sufficient explanations and the application
of the above definition, we return to the AF AF2 from Example 1.

Example 2. For the AF AF2 we have that for the acceptance of A no argument is necessary. But,
when F = Prem we have that r is necessary. For the acceptance of B both D and F are necessary
and, when F = Prem, v is necessary.

3.3 Contrastive explanations

Another relevant way in which humans structure and select their explanations is contrastive-
ness [14, 16, 17]: when people ask ‘why P?’, they often mean ‘why P rather than Q?’ – here P is
called the fact and Q is called the foil [14]. The answer to the question is then to explain as many
of the differences between fact and foil as possible.10

When humans provide a contrastive explanation, the foil is not always explicitly stated. While
humans are capable of detecting the foil based on context and the way the question is asked,
AI-based systems struggle with this.

When the foil is not explicitly stated, formal argumentation has an advantage over some other
approaches to AI because it comes with an explicit notion of conflict (i.e., the attack relation).
This allows us to derive a foil when none is provided. For example, given an argument one could
take as the foil:

• all the arguments that directly attack or defend it;

• all the arguments that directly or indirectly attack or defend it.

10See [5] for the technical details, in this paper we focus on the application of contrastive explanations.
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In the context of structured arguments, one can also look at the claims of the arguments and take
the foil to be arguments with conflicting conclusion.

Given an argument of which the acceptance status should be explained (the fact) and a foil, a
contrastive explanation contains those arguments that explain:

• the acceptance of the fact and the non-acceptance of the foil;

• the non-acceptance of the fact and the acceptance of the foil.

Definition 10. Let AF = 〈Args,A〉 be an AF, let A ∈ Args be the fact and S ⊆ Args be the foil
(for example defined by the direct attacking arguments of A). Suppose that A is accepted [resp.
non-accepted] and that each B ∈ S is non-accepted [resp. accepted]. Then:

Cont(A,S) = Acc(A) ∩

(⋃
B∈S

NotAcc(B)

)

ContN(A,S) = NotAcc(A) ∩

(⋃
B∈S

Acc(B)

)
.

When Cont(A,S) = ∅ (the case for ContN is similar) the explanation will return a pair: Cont(A,S) =〈
Acc(A),

⋃
B∈S NotAcc(B)

〉
.

Thus, given explanations for the acceptance [resp. non-acceptance] of the fact and the non-
acceptance [resp. acceptance] of the foil the contrastive explanation returns the intersection of
these explanations when it is not empty (otherwise it would simply return those two explana-
tions). An empty contrastive explanation rarely happens. In particular:

Proposition 3. Let AF = 〈Args,A〉 be an AF. Let A ∈ Args and let S ⊆ Args be such that for
each B ∈ S, (B,A) ∈ A. Then Cont(A,S) = ∅ [resp. ContN(A,S) = ∅] implies that Acc(A) = ∅
[resp.

⋃
B∈S Acc(B) = ∅].

Intuitively, this shows that a contrastive explanation is only empty if the fact is not attacked
at all [resp. no argument in the set of foils is attacked]. To illustrate contrastive explanations we
introduce another scenario, this time about a possible malafide webshop, based on the application
in [18].

Example 3. Consider a language L3, containing the atoms cf (a complaint was filed), m (the
webshop is malafide), iw (an investigation is done), sa (the url is suspicious), rc (the complaint
is retracted), kp (the webshop owner is known by the police), ka (the address is registered at the
chamber of commerce), rr (the registration was recently retracted) and their negations.

Let AT3 = 〈AS3,K3〉, where the rules in AS2 are such that, with the language L3 and K3 =
{cf, rc, sa, ka, kp, rr}, the following arguments can be derived:

A1 : cf A2 : rc A3 : sa A4 : ka A5 : kp A6 : rr

B1 : A1
d1⇒ iw B2 : A2

d2⇒ ¬n(d1) B3 : A5
d5⇒ ¬rc

B4 : B1, A3
d3⇒ m B5 : A4

d4⇒ ¬n(d3) B6 : A6
d6⇒ ¬ka.

See Figure 3 for a graphical representation of the corresponding AF AF(AT3). As in our previous
examples, each of the arguments can be accepted.

To start with, we have the following basic explanation for the acceptance of m (i.e., the webshop
is malafide): the owner of the webshop is known by the police (kp) and the registration at the
chamber of commerce was recently retracted (rr), from which it follows that no exceptions could
be derived.

Basic explanations are exhaustive: all the reasons why the webshop is malafide are provided.
With our contrastive explanations, the explanation can focus on an explicit contrastive question.
For example: the webshop is malafide rather than that there is an exception to rule d1, since
the owner is known by the police (kp); and the webshop is malafide rather than that there is
an exception to rule d3, since the registration was recently retracted (rr). Thus, the contrastive
explanations are better tailored to one question and result in smaller explanations.
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Figure 3: Graphical representation of the AF AF(AT3).

4 Conclusion

In this paper we have discussed how a general framework for explaining conclusions derived from
an argumentation framework can be applied on top of the argumentation systems in use at the
Dutch National Police. As an example we took the system in use to assist in the processing of
complaints on online trade fraud. The ideas presented in this paper can also be applied to the
other systems in use at the police as well as any other system based on argumentation frameworks
as introduced in [7].

Recall from the introduction that, unlike other approaches to local explanations of argumentation-
based conclusions [9, 10, 11, 13, 22], the framework that we applied can capture both acceptance
and non-acceptance explanations, is not based on one specific semantics (although we only con-
sidered preferred semantics here) and allows to take the structure of arguments into account (i.e.,
explanations can be sets of premises or rules, rather than just sets of arguments). Moreover, we
have shown how our framework can be used to study how findings from the social sciences (those
collected in, e.g., [17]) can be implemented. The presented studies of sufficiency, necessity and
contrastiveness are just the beginning. On the one hand, especially in the case of contrastive expla-
nations, much more can be said about the individual concepts than we could present here. On the
other hand, there are many other aspects of human explanation that have not been investigated
yet.

In future work we will continue our study of integrating findings from the social sciences into
our explanations. For example, we will study the notion of contrastiveness further, we will look
into the robustness of explanations and we will consider further selection criteria. Additionally, for
the applications at the Dutch National Police, we will implement the framework and conduct a user
study on the best explanations for these specific applications and, possibly, the best explanations
for other argumentation-based applications.
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