
Explainable Logic-Based Argumentation

Ofer Arieli1, AnneMarie Borg2, Matthis Hesse3, and Christian Straßer3

1School of Computer Science, Tel-Aviv Academic College, Israel
2Department of Information and Computing Sciences, Utrecht University

3Institute for Philosophy II, Ruhr University Bochum, Germany

Abstract

Explainable artificial intelligence (XAI) has gained increasing interest in recent years in the argu-
mentation community. In this paper we consider this topic in the context of logic-based argumentation,
showing that the latter is a particularly promising paradigm for facilitating explainable AI. In particular,
we provide two representations of abductive reasoning by sequent-based argumentation frameworks and
show that such frameworks successfully cope with related challenges, such as the handling of synonyms,
justifications, and logical equivalences.

1 Introduction
EXplainable Artificial Intelligence (XAI) is an AI research area aimed at providing explanation to infer-
ences and decisions made by intelligent systems [1]. Argumentative XAI is a fast growing area that studies
XAI by means of computational argumentation (see, e.g., the recent survey papers in [2, 3]).

Computational argumentation is based here on argumentation frameworks (AFs) [4], which are pairs of
set of arguments and attack relation between the arguments, where conclusions are derived by determining
subsets of arguments that can collectively be accepted in the framework. In logic-based argumentation [5,
6] the arguments are instantiated by applying an underlying logic. Studying argumentative XAI from a
logic-based perspective has several advantages. Beyond the fact that explanations in this context can be
justified in a logical and rational manner, a logic-based setting is especially suitable for modeling abductive
reasoning [7], which can be viewed as inference to the best explanation. Thus, it allows also for ‘backwards
reasoning’, seeking for explanations for drawing conclusions from a set of observations.

In this work, we show that logic-based argumentation (and in particular sequent-based argumenta-
tion [6, 8]) provides robust mechanisms for abductive reasoning in argumentative settings. In particular,
we consider two ways in which abductive reasoning can be modeled by sequent-based argumentation. The
first one is based on the derived argumentative conclusions, where explanations can be determined in terms
of entailment relations. In the other approach, abductive reasoning is represented within the frameworks,
where explanations are incorporated in the arguments and in the attack relations. The two approaches
are then related and are used for providing information on how explanations are justified relative to the
assumptions.

2 Preliminaries; Sequent-Based Argumentation
In this paper, we denote by L a propositional language. Atomic formulas in L are denoted by p,q,r,
formulas are denoted by φ ,ψ,δ ,γ,ε , sets of formulas are denoted by X, S, E, and finite sets of formulas
are denoted by Γ,∆,Π,Θ, all of which can be primed or indexed. The set of atomic formulas appearing in
the formulas of S is denoted Atoms(S). The set of the (well-formed) formulas of L is denoted WFF(L),
the power set of WFF(L) is denoted ℘(WFF(L)).

Sequent-based argumentation is then described as follows:
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• The base logic is an arbitrary propositional logic, namely a pair L = 〈L,`〉, consisting of a language
L and a consequence relation ` on ℘(WFF(L))×WFF(L). ` is assumed to satisfy: reflexivity (S ` φ

if φ ∈ S), monotonicity (if S′ ` φ and S′ ⊆ S, then S ` φ ), and transitivity (if S ` φ and S′,φ ` ψ then
S,S′ ` ψ).

Let L= 〈L,`〉 be a logic and let S be a set of L-formulas. The `-closure of S is the set CNL(S) = {φ |
S ` φ}. We say that S is `-consistent, if there are no formulas φ1, . . . ,φn ∈ S for which ` ¬(φ1∧·· ·∧φn).
• The language L contains at least a `-negation operator ¬, satisfying p 6` ¬p and ¬p 6` p (for atomic
p), and a `-conjunction operator ∧, for which S ` ψ ∧ φ iff S ` ψ and S ` φ . We denote by

∧
Γ the

conjunction of all the formulas in Γ. We shall sometimes assume the availability of a deductive implication
→, satisfying S,ψ ` φ iff S ` ψ → φ .
• Arguments based on a logic L= 〈L,`〉 are single-conclusioned L-sequents [9], namely: expressions of
the form Γ⇒ ψ , where ⇒ is a symbol that does not appear in L, and such that Γ ` ψ . Γ is called the
argument’s support (also denoted Supp(Γ⇒ ψ)) and ψ is the argument’s conclusion (denoted Conc(Γ⇒
ψ)). Given a set S of L-formulas (premises), an S-based argument is an L-argument Γ⇒ ψ , where Γ⊆ S.
We denote by ArgL(S) the set of all the L-arguments that are based on S.

We distinguish between two types of non-intersecting premises: a `-consistent set X of strict (i.e., non-
attacked) premises, and a set S of defeasible premises. Their non-defeasible character will give them a
special status when we define argumentative attacks below. We write ArgXL (S) for the set ArgL(X∪S). In
particular, Arg /0

L(S) = ArgL(S).
• Attack rules are sequent-based inference rules for representing attacks between sequents. Such rules
consist of an attacking argument (the first condition of the rule), an attacked argument (the last condition
of the rule), conditions for the attack (the other conditions of the rule) and a conclusion (the eliminated
attacked sequent). The outcome of an application of such a rule is that the attacked sequent is ‘eliminated’
(or ‘invalidated’; see below the exact meaning of this). The elimination of Γ⇒ φ is denoted by Γ 6⇒ φ .

Given a set X of strict (non-attacked) formulas, some common attack rules are:

• Defeat:
Γ1⇒ ψ1 ψ1⇒¬

∧
Γ2 Γ2,Γ

′
2⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

(Γ2 6= /0, Γ2∩X= /0)

• Direct Defeat:
Γ1⇒ ψ1 ψ1⇒¬γ Γ2,γ ⇒ ψ2

Γ2,γ 6⇒ ψ2
(γ 6∈ X)

• Undercut:
Γ1⇒ ψ1 ψ1⇒¬

∧
Γ2 ¬

∧
Γ2⇒ ψ1 Γ2,Γ

′
2⇒ ψ2

Γ2,Γ
′
2 6⇒ ψ2

(Γ2 6= /0, Γ2∩X= /0)

• Direct Undercut:
Γ1⇒ ψ1 ψ1⇒¬γ ¬γ ⇒ ψ1 Γ2,γ ⇒ ψ2

Γ2,γ 6⇒ ψ2
(γ 6∈ X)

• Consistency Undercut:
Γ1⇒¬

∧
Γ2 Γ2,Γ

′
2⇒ ψ

Γ2,Γ
′
2 6⇒ ψ

(Γ2 6= /0,Γ2∩X= /0,Γ1⊆X)

For instance, in the particular case where Γ1 = /0, consistency undercut indicates that an argument with an
inconsistent support is eliminated.
•A (sequent-based) argumentation framework (AF), based on the logic L and the attack rules in AR, for
a set of defeasible premises S and a `-consistent set of strict premises X, is a pair AFX

L,AR(S)=
〈
ArgX

L (S),A
〉

where A⊆ ArgX
L (S)×ArgX

L (S) and (a1,a2) ∈ A iff there is a rule RX ∈ AR, such that a1 RX-attacks a2. In
what follows we shall use AR and A interchangeably, denoting both of them by A.
• Semantics of sequent-based frameworks are defined as usual by Dung-style extensions [4]: Let AF =
AFX

L,A(S) =
〈
ArgX

L (S),A
〉

be an argumentation framework and let E ⊆ ArgX
L (S) be a set of arguments. It

is said that: E attacks a if there is an a′ ∈ E such that (a′,a) ∈ A, E defends a if E attacks every attacker of
a, and E is conflict-free (cf) if for no a1,a2 ∈ E it holds that (a1,a2) ∈ A. We say that E is admissible if it
is conflict-free and defends all of its elements. A complete (cmp) extension of AF is an admissible set that
contains all the arguments that it defends. By this, various argumentative semantics may be defined. For
instance, the grounded (grd) extension of AF is the ⊆-minimal complete extension of ArgXL (S), a preferred
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(prf) extension of AF is a ⊆-maximal complete extension of ArgX
L (S), and a stable (stb) extension of AF

is a conflict-free set in ArgX
L (S) that attacks every argument not in it.1 We denote by Extsem(AF) the set of

all the extensions of AF of type sem.
• Entailments induced from an argumentation framework AF = AFX

L,A(S) = 〈ArgXL (S),A〉 are based on
the extensions derived from AF under a semantics sem:

• Skeptical entailment: S |∼∩,semL,A,X φ if there is an argument a ∈
⋂
Extsem(AF) such that Conc(a) = φ .

• Weakly skeptical entailment: S |∼e,sem
L,A,X φ if for every extension E ∈ Extsem(AF) there is an argument

a ∈ E such that Conc(a) = φ .

• Credulous entailment: S |∼∪,semL,A,X φ iff there is an argument a ∈
⋃
Extsem(AF) such that Conc(a) = φ .

Example 1. Consider an AF, based on classical logic CL and the following set of defeasible assumptions:

S=

{
clear skies, rainy, clear skies→¬rainy, rainy→¬sprinklers,
rainy→ wet grass, sprinklers→ wet grass

}
Suppose further that there are no strict assumptions (X= /0) and that the only attack rule is undercut (Ucut).
Then, for instance, the arguments

a1 : clear skies, clear skies→¬rainy⇒¬rainy,
a2 : rainy, clear skies→¬rainy⇒¬clear skies

Ucut-attack each other. In this case there are two stable/preferred extensions E1 and E2, where a1 ∈E1 and
a2 ∈ E2. It follows, for instance, that with respect to these semantics, wet grass credulously follows from
the framework (since, e.g. rainy, rainy→ wet grass⇒ wet grass is in E2), but it does not skeptically
deducible (since there is no argument in E1 whose conclusion is wet grass).

3 Abductive Reasoning in Sequent-Based Frameworks
As noted previously, abductive reasoning is a common method of providing explanations in logic-based
contexts. Sequent-based formalisms are particularly adequate for this, as instead of the usual understanding
of a sequent Γ,∆⇒ φ by ‘φ is a conclusion of Γ∪∆’, one may intuitively read it as ‘∆ explains φ in the
presence of Γ’. This kind of ‘backward reasoning’ is also our starting point for showing the usefulness
of sequent-based frameworks for abductive reasoning. We then proceed in two directions, external and
internal ones, for defining abductive reasoning in sequent-based argumentation.

3.1 Explanations: External View
We start with an ‘external’ approach, which is based on argumentative entailment relations. Let L= 〈L,`〉
be a logic and |∼ a non-monotonic entailment induced by it.2 Given sets of strict (X) and defeasible (S)
assumptions, an explanation E of an explanandum φ with respect to |∼, is a finite set that satisfies at least
the following two properties:

Sufficiency (w.r.t. |∼): X,S,E |∼ φ

Consistency (w.r.t. `): X 6` ¬
∧
E

Thus, the set of explanations should be `-consistent with the strict assumptions, and together with the
strict and defeasible assumptions they are sufficient for |∼-inferring the explanandum φ . We call these two
conditions the basic explanation properties.

The basic explanation properties per-se may sometimes be too weak, and so they are usually accompa-
nied with further conditions. The following ones are inspired by [11]:

1Further extensions and the relations among them are discussed e.g. in [10].
2In our case, |∼ is the entailment induced from a framework that is based on L.
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Non-vacuity (w.r.t. `): E 0 φ

Minimality (w.r.t. |∼): S,E′ 6|∼ φ for every E′ for which E,X `
∧
E′ and E′,X 0

∧
E.

Non-vacuity prevents self-explanations, and minimality assures the conciseness of the explanations. For
assuring that the explanation is indeed necessary (i.e., the explanandum cannot be inferred from the as-
sumptions alone), the property of non-idleness (X,S 6` φ ) or strict non-idleness (X 0 φ) may be required.
Here it will be convenient to use the following argumentative variations of this property:

Non-idleness (w.r.t. sem): there is no a ∈
⋃
Extsem(AFX

L,A(S)) s.t. Conc(a) = φ .

Strict non-idleness (w.r.t. sem): there is no a ∈
⋃
Extsem(AFX

L,A( /0)) s.t. Conc(a) = φ .

By the above principles, external argumentative explanations are defined as follows:

Definition 1. Given a framework AF=AFX
L,A(S) based on a logic L= 〈L,`〉, a finite set E of L-formulas

is called:

• external skeptical sem-explanation of φ if it satisfies |∼∩,semL,A,X -sufficiency (X,S,E |∼∩,semL,A,X φ ), `-con-
sistency (X 6` ¬

∧
E), and holds in every sem-extension: for every E ∈ Extsem(AFX

L,A(S∪E)) there is
a ∈ E, such that Conc(a) =

∧
E.

• external weakly-skeptical sem-explanation of φ if it satisfies |∼e,sem
L,A,X -sufficiency (X,S,E |∼e,sem

L,A,X φ ),
`-consistency (X 6` ¬

∧
E), and holds in every sem-extension: for every E ∈ Extsem(AFX

L,A(S∪E))
there is a ∈ E, such that Conc(a) =

∧
E.

• external credulous sem-explanation of φ if it satisfies |∼∪,semL,A,X -sufficiency (X,S,E |∼∪,semL,A,X φ ), `-
consistency (X 6` ¬

∧
E), and holds in some sem-extension: there is some E ∈ Extsem(AFX

L,A(S∪E))
and a ∈ E, such that Conc(a) =

∧
E.

Example 2. Consider again the framework in Example 1. Note that E = {sprinklers} is a (stable and
preferred) credulous explanation for wet grass. Indeed, using the notations of Example 1, the framework
that is based on S∪E has two stable/preferred extensions: E′1 and E′2 = E2 (see Figure 1). In E′1 the grass
is wet since the sprinklers are activated, and in E′2 the grass is wet since it rains.

clear skies⇒ clear slies

sprinklers⇒ sprinklers

sprinklers,rainy→¬sprinklers
⇒¬rainy

clear skies,clear skies→¬rainy
⇒¬rainy

sprinklers,sprinklers→ wet grass

⇒ wet grass

rainy⇒ rainy

rainy,rainy→¬sprinklers
⇒¬sprinklers

rainy,clear skies→¬rainy
⇒¬clear skies

rainy,rainy→ wet grass

⇒ wet grass

E1 E2

Figure 1: Part of the AF of Example 2. The arguments with dark background are added by the explanation.
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3.2 Explanations: Internal View
We now turn to the ‘internal’ approach, where abductive explanations are handled by ingredients of the
framework. We do so by considering another type of sequents, called ‘abductive sequents’. These are
expressions of the form φ ⇐ Γ, [ε],3 and it intuitively means that ‘φ may be inferred from Γ under the
assumption that ε holds’. Note that while Γ⊆ S∪X, ε may not be an assumption, but rather a hypothetical
explanation of the conclusion.

Abductive sequents may be produced by the following rule that roughly models the usual idea of ab-
ductive inference as backwards reasoning:

ε,Γ⇒ φ

φ ⇐ Γ, [ε]
(Abduction)

In our running example, this rule will allow us to produce abductive sequents such as

wet grass⇐ [sprinklers], sprinklers→ wet grass

that provides an alternative explanation to the wetness of the grass (i.e., sprinklers, in addition to rainy),
or

¬rainy⇐ [sprinklers], rainy→¬sprinklers

that provides another possible evidence for refuting the defeasible assumption that it is rainy (i.e., sprinklers,
in addition to the assumption that the sky is clear).

Since abductive reasoning is a form of non-monotonic reasoning, which in logic-based argumentation
is modeled with the attack relations, we need a way to attack abductive sequents. To this end, we consider
rules similar to those from Section 2, e.g.:

Γ1⇒ φ1 φ1⇒¬γ φ2⇐ [ε], Γ2

φ2 6⇐ [ε], Γ2
γ ∈ (Γ2∪{ε})\X (Abductive Direct Defeat)

which models an attack on a subset of the assumptions and a hypothetical explanation of an abductive
sequent. Note that this attack rule assures, in particular, the consistency of explanations with the strict
assumptions, thus it renders the following rule admissible:

Γ1⇒¬ε φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
Γ1 ⊆ X (Consistency)

Abductive reasoning has to fulfill certain requirements to ensure proper behavior also in the internal view.
This time, attack rules may be introduced for obtaining counterparts of the properties discussed in Sec-
tion 3.1 for the external view. Note that, since abductive sequents are now derived according to the under-
lying sequent calculus and the abduction rule introduced above, the sufficiency property is automatically
satisfied. Attack rules for the other properties are given next.

Non-vacuity Rules for preventing self-explanations:

` ε → φ φ ⇐ [ε]

φ 6⇐ [ε]
(Non Vacuity)

Thus, in our running example, wet grass⇐ [wet grass] is excluded.

Minimality Rules for assuring that explanations will be as general as possible.

φ ⇐ [ε1], Γ ε2⇒ ε1 ε1 6⇒ ε2 φ ⇐ [ε2], Γ

φ 6⇐ [ε2], Γ
(Minimality)

3Note the reverse direction of the sequent sign, to emphasize the backward inference in this case.
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This rule assures that in our example sprinklers∧ irrelevant fact should not explain wet grass,
since sprinklers is a more general and so more relevant explanation.

Non-Idleness The [strict] assumptions should not already explain the explanandum.

Γ1⇒ φ φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
(Defeasible Non Idleness)

Γ1⇒ φ φ ⇐ [ε], Γ2

φ 6⇐ [ε], Γ2
Γ1 ⊆ X (Strict Non Idleness)

Note that defeasible non-idleness excludes the explanation sprinklers for wet grass, since the latter is
already inferred from the defeasible assumptions (assuming that it is rainy), while strict non-idleness will
allow this alternative explanation (since wet grass cannot be inferred from the strict assumptions).

The next step is to adapt sequent-based argumentation frameworks to an abductive setting, using ab-
ductive sequents, the new inference rule, and additional attack rules. Given a sequent-based framework
AFX

L,A(S), an abductive sequent-based framework AAFX
L,A?(S) is constructed by adding to the arguments

in ArgXL (S) also abductive arguments, produced by Abduction, and where A? is obtained by adding to the
attack rules in A also (some of) the rules for maintaining explanations that are described above. Explana-
tions according to the internal view are then defined as follows:

Definition 2. Given an abductive sequent-based framework AAFX
L,A?(S) as described above, a finite set E

of L-formulas is called:

• internal skeptical sem-explanation of φ , if there is Γ ⊆ S such that the abductive argument φ ⇐
[
∧
E], Γ is in every sem-extension of AAFX

L,A?(S).

• internal weakly-skeptical sem-explanation of φ , if in every sem-extension of AAFX
L,A?(S) there is an

abductive argument φ ⇐ [
∧
E], Γ for some Γ⊆ S

• internal credulous sem-explanation of φ , if there is Γ ⊆ S such that the abductive argument φ ⇐
[
∧
E], Γ is in some sem-extension of AAFX

L,A?(S).

Example 3. As noted above, wet grass⇐ [sprinklers], sprinklers→ wet grass is producible by
the Abduction rule from the sequent-based framework in Example 1, and belongs to a stable/preferred
extension of the corresponding abductive sequent-based framework. Therefore, sprinklers credulously
stb/prf-explains wet grass also according to Definition 2.

3.3 Explanations: Relating the Two Views
Next, we relate the two approaches for producing argumentative explanations by abductive reasoning in
sequent-based frameworks. In what follows we restrict ourselves to singleton explanations in the assump-
tions language.4 We consider {ConUcut} ⊂ A ⊆ {ConUcut,DirectDefeat,DirectUndercut}. The main
results are the following:

Theorem 1. Let AF = AFX
L,A(S) where L = CL, A is as specified above, and AAF = AAFX

L,A?(S) where
A? = A∪{Abductive Direct Defeat}. For sem ∈ {stb,prf}, E is an external weakly skeptical (resp. skepti-
cal) sem-explanation of φ w.r.t. AF iff E is an internal weakly skeptical (resp. skeptical) sem-explanation
of φ w.r.t. AAF. Moreover, E satisfies non-vacuity and/or strict non-idleness iff the non-vacuity and/or the
strict non-idleness attack rule is added to A?.

Theorem 2. Let AF = AFX
L,A(S) where L = CL, A is as specified above, and AAF = AAFX

L,A?(S) where
A?=A∪{Abductive Direct Defeat}. Then E is an external weakly skeptical (resp. skeptical) grd-explanation
of φ w.r.t. AF iff E is an internal weakly skeptical (resp. skeptical) grd-explanation of φ w.r.t. AAF. More-
over, E satisfies non-vacuity and/or strict non-idleness iff the non-vacuity and/or the strict non-idleness
attack rule is added to A?.

4Thus, using the notations of the previous sections, E= {ε}, where Atoms(ε)⊆ Atoms(S∪X).
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The proofs of Theorems 1 and 2 are based on the correspondence to reasoning with maximally consis-
tent sets of assumptions, shown in [12]. Next, we sketch the proof of Theorem 1 for A? = A∪{Abductive
Direct Defeat} and the weakly skeptical version (the proof for the skeptical version and the proof of Theo-
rem 2 are similar). In the proof, MCSXL(S) is the set of the maximally `-consistent subsets of S, which are
also `-consistent with X.

Proof outline of Theorem 1. [⇒] Suppose that E= {ε} is an external weakly skeptical sem-explanation of
φ w.r.t. AFX

L,A(S), where sem∈ {stb,prf}. In particular, S,ε |∼e,sem
L,A,X φ , and for every E∈ Extsem(AFX

L,A(S∪
{ε}) there is a ∈ E, such that Conc(a) = ε . By [12, Theorem 1], (†) for all ∆ ∈MCSXL (S∪{ε}) we have
that X,∆ ` φ and X,∆ ` ε .

Let now E ∈ Extsem(AAFX
L,A?(S)). Then E∩ArgX

L (S) ∈ Extsem(AFX
L,A(S)), and so, by [12, Theorem 1]

again, E∩ArgXL (S) = ArgXL (∆) for some ∆ ∈ MCSXL (S). By (†), for all Ω ∈ MCSXL (S), Ω,X 0 ¬ε . So,
X,∆ 0 ¬ε . Thus ∆∪{ε} ∈MCSXL (S∪{ε}). By (†), there is some finite Γ⊆ ∆\{ε}, for which X,Γ,ε ` φ .
It follows that φ ⇐ [ε], Γ is an abductive argument in AAFX

L,A?(S).
Note that X,∆ 6` ¬γ for all γ ∈ (Γ∪{ε}) \X, otherwise X,∆ ` ¬ε , in a contradiction to (†) and the

consistency of Γ ⊆ ∆. Thus φ ⇐ [ε], Γ is not abductively attacked by any element of E, and so φ ⇐
[ε], Γ ∈ E. It follows that ε is an internal weakly skeptical sem-explanation of φ w.r.t. AAFX

L,A?(S).

[⇐] Suppose that E = {ε} is an internal weakly skeptical sem-explanation of φ w.r.t. AAFX
L,A?(S). Let

E ∈ Extsem(ArgXL (S∪{ε})). By [12, Theorem 1], E = ArgXL (∆) for some ∆ ∈ MCSXL (S∪ {ε}). Then
X,∆ 0 ¬ε , and so ∆′ = ∆∩S ∈MCSXL (S). Let E′ be the set of all the (X∪∆)-based sequents and (X∪∆)-
based abducitble sequents. It can be shown that E′ ∈ Extsem(AAFX

L,A?(S)). Thus, there is an φ⇐ [ε], Γ∈E,
and Γ,ε ` φ (for Γ⊆ ∆∪X). Thus, X,∆ ` φ and X,∆ ` ε . It follows that ε is an external weakly skeptical
sem-explanation of φ w.r.t. AFX

L,A(S).

We note that not in all cases the external and internal explanations coincide, even when L = CL and
A= {Direct Defeat,ConUcut}. The next example illustrates this:

Example 4. Let L= CL, A= {Direct Defeat,ConUcut}, S= {p,¬p∧q} and X= {q∧ r→ s}. Then:

1. q∧ r is an external weakly-skeptical stb-explanation of s, since the corresponding sequent-based
framework has two stable extensions: ArgXL ({p, q∧ r}) and ArgX

L ({¬p∧ q, q∧ r}), both of which
contain arguments for q∧r and for q∧r→ s. Note that this explanation satisfies Non-vacuity (s does
not follow from q∧ r).

2. q∧ r is an internal weakly-skeptical stb-explanation of s, since the corresponding abductive sequent
framework also has two stable extensions, one with the abducible sequent s⇐ [q∧ r], p, q∧ r→ s
and the other with the abducible sequent s⇐ [q∧ r], ¬p∧ q, q∧ r→ s. This holds also when the
non-vacuity and/or strict non-idleness attack rules are part of the framework.

This is in accordance with Theorem 1. Suppose now that minimality is imposed. Then:

1. q∧ r remains an external weakly-skeptical stb-explanation of s, since it satisfies the minimality
condition.

2. q∧r is no longer an internal weakly-skeptical stb-explanation of s when minimality attack is added to
the abductive sequent-based framework, since the extension that contains s⇐ [q∧r], ¬p∧q, q∧r→
s includes also a minimality attacker, namely: s⇐ [r], ¬p∧q, q∧ r→ s.

4 Some Further Considerations
In this section we briefly comment on some other aspects of argumentation explanation.
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4.1 Handling of Synonyms and Antonyms
Synonyms and antonyms may be handled by the strict assumptions, as they should not be revised. This may
be done either to clarify the meaning of some terminology used by defeasible formulas, or for extending
the vocabulary describing the domain of discourse. For instance, suppose that in our running example we
add the strict assumption X= {blue skies↔ clear skies}. Then, since

blue skies, blue skies↔ clear skies, clear skies→¬rainy ` ¬rainy
we derive, by the Abduction rule, the abductive sequent

¬rainy⇐ [blue skies], blue skies↔ clear skies, clear skies→¬rainy
Thus, under stable or preferred semantics, blue skies explains ¬rainy. Similarly, blue skies explains
¬wet grass, etc.

4.2 Keeping Track of Explanations; Explanations Justifications
In the context of defeasible reasoning explanatory arguments are threatened by defeaters. While abductive
sequents φ ⇐ [ε],Γ state that in the context Γ the explanandum φ is deducible from the explanation ε , it
contains no information of how this explanation is justified against the background of possible defeaters.
In the terminology of argumentation theory, abductive sequents cover the illative tier (support) but not
the dialectic tier (defeating defeaters) of argumentation [13, 14]. In order to keep track of the latter, we
incorporate some ideas in the spirit of [15], adapted to logic-based argumentation in general and abductive
argumentation frameworks in particular.

Let AAFX
L,A?(S) be an abductive sequent-based framework with a set ArgXL (S) of ordinary and abductive

arguments, and a set A of attack rules on ArgXL (S)×ArgX
L (S). For a semantics sem and operator 2∈{∪,∩},

we consider the following sets:

• AbdArg(φ , [ε]) = {a ∈ ArgXL (S) | a is of the form φ ⇐ Γ, [ε] for some Γ⊆ S}

• AbdArg2sem(φ , [ε]) = {a ∈ AbdArg(φ , [ε]) | a ∈2Extsem(AAFX
L,A?(S))}

Thus, AbdArg2sem(φ , [ε]) consists of all the abductive arguments in which ε explains φ (namely, the ele-
ments of AbdArg(φ , [ε])), and that belong to the intersection (if 2 = ∩) or the union (if 2 = ∪) of all the
sem-extensions of AAFX

L,A?(S).
To justify the explanation of φ by ε with respect to sem and 2, we therefore need to compute the

supports of the arguments that defend the elements in AbdArg2sem(φ , [ε]) (divided by sem-extensions)

• DefE(a) = {Supp(b) | b ∈ E, b defends a in AAFX
L,A?(S)}

• Justify2sem(φ , [ε]) = {DefE(a) | a ∈ AbdArg2sem(φ , [ε]), E ∈ Extsem(AAFX
L,A?(S))}

Example 5. Suppose that we want to justify the comment in Example 3 that sprinklers credulously
stb-explains wet grass. For this, note that:
1. The abductive sequent a = wet grass⇐ [sprinklers], sprinklers→ wet grass is part of the set
AbdArg(wet grass, [sprinklers]) and AbdArg∪stb(wet grass, [sprinklers]).
2. By Abductive Defeat, the abductive sequent a in Item 1 is attacked by the sequent b = rainy, rainy→
¬sprinklers⇒ ¬sprinklers, which in turn is counter-attacked (using Defeat) by the argument c =
clear skies,clear skies→¬rainy⇒¬rainy. It follows that c defends a.
3. By the introduced notation, Supp(c) = {clear skies,clear skies→¬rainy} is in DefE(a), where
E is one of the two stable extensions of the abductive argumentation framework under consideration. Thus,
for these a and E, we have:

(?)
DefE(a) ∈ Justify∪stb(wet grass, [sprinklers]),
{clear skies,clear skies→¬rainy} ∈ DefE(a).

An intuitive description of (?) is the following: sprinklers is an explanation for wet grass. The set
{clear skies, clear skies→¬rainy} is a justification for this explanation. Indeed, it is assumed that
the sky is clear, and in that case there is no rain. Therefore, the wetness of the grass can be explained by
the operation of the sprinklers.
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4.3 Explanations Reduction; Avoiding Logically Equivalent Explanations
By its definition, if ε explains φ (either internally or externally), then – unless the range of the explanations
is restricted – every formula that is logically equivalent to ε according to the base logic L also explains φ .
This ‘explosion’ in the number of explanations may be avoided in several ways, e.g., by introducing appro-
priate attack rules that exclude logically equivalent alternatives of a derived explanation, or by switching
to equivalence classes of logically equivalent formulas (see, e.g., [16]). Briefly, the idea is the following:
1. equivalence in L is defined as usual by: ψ ≡ φ iff ψ ` φ and φ ` ψ .
2. classes of arguments are defined by: JΓ⇒ ψK = {∆⇒ φ | ∆ ∈ JΓK, φ ∈ JψK}, where:

JψK = {φ | φ ≡ ψ} and Jψ1, . . . ,ψnK = {{φ1, . . . ,φn} | ∀1≤ i≤ n φi ∈ JψiK}.
Now, given a framework AFX

L,A(S) =
〈
ArgX

L (S),A
〉

we switch to a framework whose arguments are classes
JaK for a ∈ArgX

L (S), and where JaK attacks JbK if there are some a′ ∈ JaK∩ArgX
L (S) and b′ ∈ JbK∩ArgXL (S)

such that (a′,b′) ∈ A. As usual, one has to show independence of the choice of representatives. This is
rather routine.

5 Discussion and Conclusion
Abduction has been widely applied in different deductive systems, such as adaptive logics (see, e.g., [17,
18]), and AI-based disciplines, perhaps the most prominent one is logic programing (see [19, 20] for
surveys). Argumentation-based approaches include frameworks for agent-based dialogues [21, 22] and
assumption-based argumentation frameworks [23]. In [24, 25] abduction is studied as the problem of
adding arguments to a given argumentation framework so that a given argument is rendered acceptable.

Our approach offers several novelties. In terms of knowledge representation we transparently represent
abductive inferences by an explicit inference rule that produces abductive arguments. The latter are a
new type of hypothetical arguments that are subjected to potential defeat. A variety attack rules address
the quality of the offered explanation and thereby model critical questions [26] and meta-argumentative
reasoning [27]. This is both natural and philosophically motivated, as argued in [28], where also a gap in
argumentative accounts of abduction is identified. Instead of imposing desiderata on abductive inferences
from the outside we incorporate them in the argumentative reasoning process. Our framework offers a
high degree of modularity, and in comparison to approaches in logic programming we allow for fully
propositional base logics. Desiderata on abductive arguments can be disambiguated in various ways by
simply changing the attack rules, all in the same base framework. This allows for a thorough logical
analysis and disambiguation of these properties as demonstrated in Theorems 1, 2 and Example 4.

The presented work is mainly focused on representation considerations. In future work we plan to
take advantage of the uniformity of the sequent-based methods for explanation, and carry them on to more
expressive logics (involving, e.g., preference relations among arguments) and to other types of explana-
tions. We also plan to further develop meta-theoretical results concerning our setting and incorporate other
approaches to the dialectic tier of explanation, such as related admissibility [14] or strong explanation [29].
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