
Highlights

Approximating Stability for Applied Argument-based Inquiry

Daphne Odekerken, Floris Bex, AnneMarie Borg, Bas Testerink

• Detecting stability is a CoNP-complete problem in dynamic argumentation.

• A claim is stable if more information cannot change its justification status.

• We propose a sound and polynomial approximation algorithm for estimat-
ing stability.

• We provide empirical and theoretical analyses of the algorithm’s perfor-
mance.

• The algorithm is applied in three use cases at the Netherlands Police.

Approximating Stability for Applied Argument-based
Inquiry

Daphne Odekerkena,b,∗, Floris Bexa,c, AnneMarie Borga, Bas Testerinkb

aDepartment of Information and Computing Sciences,
Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands

bNational Police Lab AI, Netherlands Police, Driebergen, The Netherlands
cTilburg Institute for Law, Technology and Society,

Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands

Abstract

In argument-based inquiry, agents jointly construct arguments supporting or at-
tacking a topic claim to find out if the claim can be accepted given the agents’
knowledge bases. While such inquiry systems can be used for various forms
of automated information intake, several efficiency issues have so far prevented
widespread application. In this paper, we aim to tackle these efficiency issues by
exploring the notion of stability: can additional information change the justifica-
tion status of the claim under discussion? Detecting stability is not tractable for
every input, since the problem is CoNP-complete, yet in practical applications it is
essential to guarantee efficient computation. This makes approximation a viable
alternative. We present a sound approximation algorithm that recognises stability
for many inputs in polynomial time and discuss several of its properties. In par-
ticular, we show that the algorithm is sound and identify constraints on the input
under which it is complete. As a final contribution of this paper, we describe how
the proposed algorithm is used in three different case studies at the Netherlands
Police.

Keywords: Dynamic argumentation, Structured argumentation, Inquiry, Law
enforcement

∗Corresponding author
Email addresses: d.odekerken@uu.nl (Daphne Odekerken), f.j.bex@uu.nl (Floris

Bex), a.borg@uu.nl (AnneMarie Borg), bas.testerink@politie.nl (Bas Testerink)

Preprint submitted to Intelligent Systems with Applications September 28, 2022

1. Introduction

Human or artificial agents that cooperate in collecting information in order to
find out if a given (topic) claim should be accepted, engage in an inquiry dialogue
(Walton and Krabbe, 1995). A domain that is especially suitable for artificial intel-
ligence (AI) systems that perform automated inquiry is law enforcement. For ex-
ample, the Netherlands Police every day receives 200-300 reports of online trade
fraud (Schraagen et al., 2019), as well as 800-900 requests for assistance or infor-
mation from international law enforcement agencies (Testerink et al., 2019a). In
such cases, an AI-based support system that automatically handles at least part of
the inquiry would be of much help. However, AI systems in law enforcement will
have to fully comply with requirements on, e.g., transparency and proportionality,
law enforcement having been identified as a high-risk domain in the European
Commission’s recent proposal for a regulatory framework on AI (European Com-
mission, 2021). For example, with respect to proportionality, no more information
than is needed for making a decision should be collected. With respect to trans-
parency, it makes sense to use more interpretable symbolic AI methods rather than
data-driven machine learning methods (Rudin, 2019). In this paper, we focus on
the symbolic AI technique of computational argumentation.

Computational argumentation is a subfield of AI concerning reasoning with in-
complete or inconsistent information (Atkinson et al., 2017). Two central concepts
in computational argumentation are abstract argumentation frameworks (Dung,
1995) – sets of arguments and the attack relations between them – and structured
argumentation frameworks – e.g., ASPIC+ (Prakken, 2010), where arguments are
constructed from an argumentation theory, containing a knowledge base and a set
of rules, and the attack relation is based on the individual elements in the argu-
ments. For both abstract and structured argumentation frameworks, one can de-
termine sets of arguments that can collectively be considered as acceptable. This
notion of acceptability in computational argumentation can be used in argument-
based inquiry, where the participating agents construct arguments that influence
the acceptability status of some central topic claim(s). An advantage of argument-
based inquiry is that the outcome – whether a topic claim should be accepted or
not – can be explained by arguments related to this claim. If these arguments are
then based on legal rules, the outcome can thus be related to an explicit represen-
tation of the legal background.

Whereas argument-based inquiry has been studied before (Parsons et al., 2002;
Black and Hunter, 2009; Fan and Toni, 2012), efficiency – in terms of both the
length of the dialogue and computational efficiency – remains an issue. For ex-

2

ample, the dialogue system for (warrant) inquiry proposed by Black and Hunter
(2009) exhaustively constructs all the arguments for or against a particular topic
claim to determine the claim’s acceptability status, which typically leads to redun-
dant interactions in the dialogue, conflicting with the principle of proportionality
(i.e. no more information should be collected than is needed for making a de-
cision). In addition, computational argumentation, particularly using structured
argumentation frameworks, is largely based on reasoning in logic (cf. Besnard
et al. (2014)). As a consequence, many problems in argumentation are situated in
high complexity classes (see e.g. Parsons et al. (2002); Dvořák and Dunne (2017))
and are therefore intractable if P ̸= NP, a common assumption that we also make
in this paper. We consider this to be an important reason why argument-based
systems for inquiry are not yet widely used in actual applications.

In order to resolve the issue of redundant interactions, we explore the notion of
stability: can any additional information still change the acceptability status of the
topic claims? If not, it does not make sense to inquire into additional arguments
related to this claim. Consequently, the notion of stability is a natural termination
criterion for argument-based inquiry. In this paper, we study the task of detect-
ing stability in argumentation frameworks based on a variant of the structured
argumentation framework ASPIC+ (Prakken, 2010), which is one of the main ap-
proaches to structured argumentation (Besnard et al., 2014).

Studying stability does not solve the problem of computational efficiency,
since the problem of detecting stability is in a high complexity class: we will
prove that it is CoNP-complete. Problems in this complexity class are gener-
ally considered intractable: there is no exact polynomial-time algorithm for any
CoNP-complete problem. This means that each algorithm that accurately detects
stability for every input needs exponential time. A naive but accurate stability de-
tection algorithm would for example generate all argumentation theories that can
be obtained by adding information and subsequently compare the acceptability
statuses of topic claims. We will experimentally show that such an algorithm has
an impractically large running time even for very small inputs. Since practical ap-
plications require fast computation for arbitrary inputs, we propose a polynomial-
time approximation algorithm for estimating stability. By proving the algorithm’s
worst-case time complexity, we guarantee an upper limit on the running time in
relation to the size of the input. Having a polynomial algorithm paves the road
to efficient stability detection that is scalable to large argumentation theories. We
will validate this by an empirical analysis on synthesised argumentation theories
as well as examples from the law enforcement domain.

The efficiency of our algorithm comes at a cost: it is not exact, which is an

3

inevitable property of applying polynomial algorithms for CoNP-complete prob-
lems. We will extensively evaluate the performance of the algorithm, both empir-
ically and theoretically. The empirical analysis indicates that the performance is
satisfactory for the inputs that we tested. Thanks to our theoretical analysis, we
can give more general guarantees on the algorithm’s performance. First, we will
show that the algorithm is sound: if the algorithm determines that a claim is stable,
then indeed no additional information can change the acceptability of this claim.
When applied as a termination criterion in inquiry, this ensures that the inquiry
dialogue is not terminated too early. In addition, we will show that the algorithm
is complete given specific conditions on the input. If these conditions are met, the
algorithm is able to recognize all stable situations and consequently makes sure
that the inquiry is terminated exactly in time.

As a final contribution, we describe how our algorithm is applied at the Nether-
lands Police in argument-based inquiry systems for three different processes with
a legal reasoning subtask, including two intake processes and a specific human-
in-the-loop classification task. These systems operate in various domains, namely
fraud intake, handling international messages and the classification of fraudulent
web shops. The fraud intake system has been used by hundreds of users every
day since September 2019. Although various domains and applications require
some variance in implementation, our algorithm for detecting stability could be
directly used in all three use cases. This demonstrates that our proposed algo-
rithm is generally applicable for real-life inquiry, even in high-risk domains such
as law enforcement.

Outline. Before we formally define the stability problem in Section 3, we discuss
the preliminaries in Section 2. In Section 4, we propose an approximation algo-
rithm for detecting stability and prove properties of soundness, conditional com-
pleteness and time complexity. In addition, we report on experiments measuring
the algorithm’s running time. In Section 5, we discuss the three case studies at the
Netherlands Police. Finally, we discuss related work in Section 6 and conclude in
Section 7.

Contributions. This work unites and extends our earlier research in Testerink et al.
(2019b) and Odekerken et al. (2020). Our main new contributions include a gen-
eralisation of the notion of conflict from classical negation to the use of a contra-
diction function; a more precise analysis of (in)completeness cases; full proofs for
all complexity, soundness and conditional completeness results; empirical analy-
ses of algorithms for detecting stability; and an extensive description of three case

4

studies at the Netherlands Police. In addition, we discuss our design choices in
more detail and connect our approach to related work in conversational AI and
dynamic argumentation. In order to enable reproducibility, we made the imple-
mentations of the algorithms, data set generators and visualisation tool presented
in this paper available at https://github.com/DaphneO/StabilityLabelAlgorithm.

2. Preliminaries

We will study the problem of stability in the context of argumentation frame-
works (Dung, 1995) where arguments are constructed by an instantiation of the
ASPIC+ framework (Prakken, 2010). In this section, we first recall ASPIC+ defi-
nitions and specify how arguments are constructed from an argumentation system
and a knowledge base. Subsequently, we define abstract argumentation frame-
works based on ASPIC+ arguments and the attacks between them. Based on these
abstract argumentation frameworks, we can derive which arguments should be
accepted under grounded semantics (Dung, 1995). Finally, we define a justifi-
cation status for statements based on the existence and/or acceptability status of
arguments for and against them.

2.1. ASPIC+
ASPIC+ is a general framework for structured argumentation. As a result of

various revisions and extensions in the development of the framework over the
years, it is not a single framework, but rather a family of frameworks varying on
several elements (Modgil and Prakken, 2018). In this paper, we define a light-
weight ASPIC+ instantiation that suffices for our purpose. We will motivate our
choices at the end of this section.

The basic notion of ASPIC+ is that of an argumentation system, which consists
of a logical language L, a set of rules R and a contradiction function . An
argumentation system is defined as follows.

Definition 1 (Argumentation system). An argumentation system is a tuple AS =
(L,R,) where:

• L is a finite logical language consisting of propositional literals.

• R is a finite set of defeasible rules of the form a1, . . . , am ⇒ c such that
{a1, . . . , am, c} ⊆ L, where {a1, . . . , am} are the antecedents and c is the
consequent of the rule. For any rule r, the antecedents and consequent are
denoted by ants(r) and cons(r), respectively.

5

https://github.com/DaphneO/StabilityLabelAlgorithm

• is a contradiction function from L to 2L. l is a contradictory of m iff
m ∈ l and l ∈ m. Each l ∈ L has at least one contradictory. For each
l ∈ L : l ̸∈ l.

In our examples we often use classical negation (¬) as contradiction function:
for each l ∈ L : l = {¬l} and ¬l = {l}. An argumentation theory is a combina-
tion of an argumentation system AS and a knowledge base K ⊆ L.

Definition 2 (Knowledge base). A knowledge base K ⊆ L over an argumentation
system AS = (L,R,) is a set of literals that is consistent (i.e., for each pair
l,m ∈ K : l ̸∈ m).

Definition 3 (Argumentation theory). An argumentation theory AT = (AS,K)
is a pair consisting of an argumentation system AS and a knowledge base K.

Given an argumentation theory, we can derive two types of arguments: obser-
vation-based arguments are based on elements from the knowledge base, whereas
rule-based arguments are constructed by chaining applications of defeasible rules.

Definition 4 (Arguments). Let AT = (AS,K) be an argumentation theory. An
argument A on the basis of the argumentation theory AT is a structure obtainable
by applying one or more of the following steps finitely many times:

• c is an observation-based argument if c ∈ K.
The set of premises prem(A) of A is {c}.
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is {c}.

• A1, . . . , Am ⇒ c is a rule-based argument if for each i ∈ [1 . . m]: there
is an argument Ai on the basis of AT with conclusion ci and there is a rule
r : c1, . . . , cm ⇒ c in R.
The set of premises prem(A) of A is prem(A1) ∪ . . . ∪ prem(Am).
The conclusion conc(A) of A is c.
The set of subarguments sub(A) of A is sub(A1) ∪ . . . ∪ sub(Am) ∪ {A}.
The top rule top-rule(A) is r.

We denote by Arg(AT) the set of arguments on the basis of AT. An argument
with conclusion c is referred to as “an argument for c” and an argument with top
rule r by “an argument based on r”.

6

sm b sp ¬b ¬rp b ¬rm ¬b u b s ¬b

cd ¬rd d

f

b t

¬f

Figure 1: Example of an argumentation theory AT from the law enforcement domain.
(Rounded) squares represent literals from L and literals in K are shaded, where rounded
squares are queryable literals, to be discussed in Section 3.1. Rules are represented by
double-lined arrows and attacks as single-lined arrows. Note that the literals b and ¬b are
visualised multiple times and and the contrariness relation between b and ¬b is omitted
for clarity.

In order to clarify the notion of arguments, we introduce an example of an
argumentation theory in the domain of online trade fraud, visualised in Figure 1.
Online trade fraud is a type of high-volume crime that concerns fake web shops
and malicious second-hand traders on platforms such as eBay. We will use this
argumentation theory as a running example in this section. Note that this is a sim-
plified example: the actual argumentation theory that is used by the Netherlands
Police is more complex. For more details on the argumentation theories used in
actual applications, we refer to Section 5.

Example 1 (Argument). Let AT = (AS,K) with AS = (L,R,) be an argumen-
tation theory in the domain of online trade fraud, visualised in Figure 1. L consists
of the following literals and their negations:

• b: citizen tried to buy a product (as opposed to selling a product);
• sm: citizen sent money;
• sp: citizen sent product;
• rp: citizen received product;
• rm: citizen received money;
• u: suspect url;
• s: screenshot of payment;
• t: trusted web shop;
• cd: citizen delivered;
• rd: citizen received delivery;

7

• d: deception;
• f : fraud.

Let K = {b, sm,¬rp, u, t}. Then there are, for example, observation-based argu-
ments for sm and b, and a rule-based argument for cd based on the rule sm, b ⇒ cd,
having these observation-based arguments and itself as subarguments. Similarly,
there are rule-based arguments for ¬rd, d, ¬f and f.

Arguments can be in conflict. In ASPIC+, attacks between arguments are
based on the arguments’ structure. In this paper, we only consider rebuttal attacks,
where arguments attack each other on the conclusion of a defeasible inference, as
defined next.

Definition 5 (Attack). Let AT = (AS,K) be an argumentation theory where AS =
(L,R,). For two arguments A,B ∈ Arg(AT) we say that A attacks B (on B′)
iff conc(A) ∈ l for some B′ ∈ sub(B) of the form B′′

1 , . . . , B
′′
n ⇒ l.

Example 2 (Online trade fraud). In our running example on online trade fraud
(Figure 1), Arg(AT) includes an argument for f based on the rule cd,¬rd, d ⇒ f
and an argument for ¬f based on b, t ⇒ ¬f . These arguments attack each other.

Given an argumentation theory AT = (AS,K) we can define an argumentation
framework (Dung, 1995) consisting of a set of arguments A and a set of attacks C.

Definition 6 (Argumentation framework). Let AT be an argumentation theory
AT = (AS,K). An argumentation framework AF defined by AT, is a pair
AF = ⟨A, C⟩ where A = Arg(AT) and (X, Y) ∈ C iff X attacks Y in AT.

At this point, we have defined our instantiation of the ASPIC+ framework.
Readers familiar with ASPIC+ will notice that our instantiation is simplified in
that we only consider axiom premises, a finite set of defeasible rules, rebuttal at-
tacks and no preferences. The simplifications provide a minimal number of formal
concepts that maintains the theoretical underpinnings of computational argumen-
tation whilst being sufficiently expressive for real-world applications, such as the
application of inquiry dialogue at the Netherlands Police, as we motivate below.

First, full ASPIC+ makes a distinction between ordinary premises (which are
defeasible and therefore can be attacked) and axiom premises that cannot be at-
tacked. We only consider axioms in the knowledge base, because in inquiry dia-
logues the reasoning is always based on observations – or evidence – that can be
considered to have been established with certainty in the context under consider-
ation (Black and Hunter, 2009). For instance, in the context of online trade fraud,

8

the reasoning is based on basic observations provided by citizens or gathered from
a police database, and we assume that the fact that such observations have been
made can be established with certainty. Of course, it can be argued that we can
never be completely certain about an observation: for example, the observation
may have been automatically extracted from (noisy) text by a less-than-perfect
classifier (cf. Section 5.1.2). However, we solve such issues with establishing ob-
servations as part of the information extraction step, which differs per use case.
For example, in the fraud intake application, we included an observation valida-
tion step in which the citizen can check and correct the extracted observations, as
we will explain in Section 5.1.2.

Second, we only consider defeasible rules without preferences. If we would
also consider strict rules and/or a preference relation between defeasible rules, we
would need to train police employees to construct argumentation theories in such
a way that the rationality postulates, i.e. desirable properties for structured argu-
mentation, are satisfied. Caminada and Amgoud (2007) proposed the rationality
postulates of sub-argument closure, closure under strict rules, direct consistency
and indirect consistency. These four rationality postulates are satisfied if the argu-
mentation theory is well-formed (Prakken, 2010). Since we do not consider strict
rules or preferences between arguments and the knowledge base is required to be
consistent, each argumentation theory as defined in Definition 3 is well-formed.
This makes it more feasible for police employees without background in compu-
tational argumentation to adapt or create rule sets.

Third, we define the language and rules of the argumentation system as finite
sets. This enables us to assign a label to each literal and rule in the polynomial
algorithm proposed later in this paper. For the application in e.g. police practice
this is not restricting, since it is quite natural to use a limited number of rules and
literals are used to capture domain-specific information.

Fourth, we chose to restrict the attack types to rebuttal attacks. In full ASPIC+,
arguments can attack each other in three ways: rebuttal, undermining and under-
cutting attacks (Prakken, 2010). Since our knowledge base only contains axiom
premises, undermining attacks on premises cannot occur and therefore do not need
to be considered. Furthermore, all notions of conflict in our practical use-cases can
be modelled using rebuttal attacks, as we illustrate with examples in Section 5.

To conclude, our instantiation of ASPIC+, in which we only consider a finite
set of axiom premises, defeasible rules without preferences and rebuttal attacks,
makes it more feasible for police employees to construct or edit argumentation
systems, but still suffices to create meaningful inquiry agents for our use cases at
the police. For future use cases, it might be interesting to allow rule preferences

9

and undercutting attacks as well, provided that preferences are defined in such a
way that the argument ordering is reasonable. However, these extensions would
complicate the definitions, solutions and proofs; therefore, we leave this for future
work.

2.2. Argumentation semantics
The evaluation of arguments is done using the semantics of Dung (1995). In

this paper, we focus on grounded semantics, where the grounded extension is the
set of arguments that should be accepted according to the grounded semantics.

Definition 7 (Grounded extension). Let AF = ⟨A, C⟩ be an argumentation frame-
work and S ⊆ A. Then:

• S is conflict free iff for each X, Y ∈ S : (X, Y) ̸∈ C.

• X ∈ A is acceptable with respect to S iff for each Y ∈ A such that
(Y,X) ∈ C, there is a Z ∈ S such that (Z, Y) ∈ C.

• S is an admissible set iff S is conflict free and X ∈ S implies that X is
acceptable with respect to S.

• S is a complete extension iff S is admissible and for each X: if X ∈ A is
acceptable with respect to S then X ∈ S.

• S is the grounded extension of AF iff it is the set inclusion minimal com-
plete extension.

For an argumentation theory AT that defines an argumentation framework AF , we
refer to the grounded extension of AF with G(AT).

Apart from the grounded semantics, various other argumentation semantics
exist; see Baroni et al. (2011) for an overview of some well-known options. In
this paper, we concentrate on the grounded semantics, for two reasons. First, the
grounded semantics is the most skeptical complete semantics, which implies that
as few arguments as possible are accepted, while still being a complete exten-
sion. This fits the application in police investigation: in our case studies, we only
accept a statement if, given current information, for every reasonable position (ex-
tension) that one can take, an argument for the statement is in that extension. This
requirement is only met by the grounded extension, which is the intersection of
all complete extensions of the argumentation framework (Dung, 1995). Second,
Cerutti et al. (2020) show that using a grounded reasoner is already an almost
perfect approximation algorithm for many semantics.

10

2.3. Justification status of statements
Since we study inquiry dialogues, where the goal is to find out if a statement

is justified (Walton and Krabbe, 1995), we are interested in the justification status
of statements rather than arguments. In ASPIC+, a statement is justified under
grounded semantics if and only if there exists an argument for that statement that
is justified; otherwise, the statement is not justified (Modgil and Prakken, 2013,
Definition 15). Our application in police practice however demands a distinction
between more than two statuses, which gives a more fine-grained notion of justi-
fication in the argumentation theory. This enables us, for example, to differentiate
between exculpatory evidence and a lack of evidence in police inquiry.

In earlier work, Prakken and Vreeswijk (2001, Definition 4.28) distinguish
three possible statuses that can be assigned to conclusions of arguments; Wu and
Caminada (2010) distinguish six statuses to be assigned to literals; and Hecham
et al. (2018) propose six statement labels for different variations of defeasible
reasoning.

We distinguish four justification statuses, in which we have a special status
unsatisfiable for literals for which there is no argument, in contrast to Prakken and
Vreeswijk (2001) and Wu and Caminada (2010). Our four justification statuses
are similar to the UNSUP, INdef , OUTdef and AMBIG statement labels by Hecham
et al. (2018).

Definition 8 (Multi-valued statement justification status). Let AT = (AS,K) be
an argumentation theory where AS = (L,R,) and let AF = ⟨A, C⟩ be the
argumentation framework defined by AT. Then the justification status of l ∈ L in
AT is:

• unsatisfiable iff there is no argument for l in A;

• defended iff there exists an argument for l in A that is also in the grounded
extension G(AT);

• out iff there exists an argument for l in A, but each argument for l in A is
attacked by an argument in the grounded extension G(AT);

• blocked iff there exists an argument for l in A, but no argument for l is in
the grounded extension G(AT) and at least one argument for l is not attacked
by an argument in the grounded extension G(AT).

The defended status that we defined here corresponds to the justified status
of conclusions of arguments in Modgil and Prakken (2013, Definition 15). Con-
clusions of arguments that are not justified can be either out or blocked, where

11

intuitively a literal that is blocked can be accepted by a credulous reasoner, under
different semantics (Baroni et al., 2011). The distinction between out and blocked
is also convenient for the stability algorithm in Section 4 – in Example 5 we will
demonstrate this.

Example 3 (Example 2 continued). In the argumentation theory AT from Figure 1,
G(AT) contains (unattacked) arguments for sm, b, ¬rp, u, t, cd, ¬rd and d, so
these literals are defended in AT. There are arguments for f and ¬f in Arg(AT)
that attack each other, but these are not attacked by any argument in G(AT) or
acceptable w.r.t. G(AT), so f and ¬f are blocked in AT. Each other literal l ∈ L
is unsatisfiable in AT: there is no argument for l in Arg(AT).

Note that the four statement justification statuses are mutually exclusive and
complementary, so each literal in each argumentation theory has exactly one jus-
tification status.

Lemma 1. The statement justification statuses unsatisfiable, defended, out and
blocked from Definition 8 are mutually exclusive and complementary.

Proofs for all lemmas and propositions in this paper can be found in the ap-
pendix; the proof of Lemma 1 is available in Appendix B.3.

3. Stability

In this section, we introduce the problem of stability and discuss its complex-
ity. Stability can be seen as a dynamic variant on the justification status defined
in the previous section: the justification status determines if a literal l is justified
given current information. However, in an inquiry dialogue, more information can
be added by, for instance, querying a citizen or data base, which possibly results
in a change of l’s justification status. If additional information cannot influence
l’s justification status, then we say that l is stable.

3.1. Defining stability
First, we define the stability problem, which is a problem in dynamic argu-

mentation (Doutre and Mailly, 2018). Informally, a literal is stable in some argu-
mentation theory if its justification status cannot change by adding more literals
to the knowledge base. We impose some restrictions on the allowed additions on
the knowledge base, for two reasons.

The first reason is that, in any dynamic argumentation setting, allowing any
change to the argumentation framework effectively makes the problem trivial; a

12

similar problem was identified by Baumann and Brewka (2010). In our case,
allowing any literal to be added to the knowledge base makes the stability problem
trivial, as then any literal can be made stable and defended simply by adding it to
the knowledge base K (provided that none of its contradictories is already in K).

The second reason that prevents us from simply adding any literal to the
knowledge base is more practical. Since our use cases are within the law en-
forcement domain, we base our argumentation theories on laws and literals that
represent certain legal concepts. In our running example on online trade fraud,
‘fraud’ is such a concept, which is defined precisely in Article 326 of the Dutch
Criminal Code. Because we cannot expect citizens to know the exact legal defi-
nition of ‘fraud’, we do not want to directly ask them if they have been a victim
of such fraud. Instead, we want to ask citizens whether they observed certain ba-
sic, non-legal facts, such as whether they sent money or received a product, and
then use legal rules captured in the rule base R to derive legal conclusions about
fraud.1 We therefore distinguish between queryable and non-queryable literals,
where queryables are a specific set of literals that can be obtained (i.e. added to
the knowledge base) by querying the environment (e.g. the citizen or a database).

Definition 9 (Queryables). Given an argumentation theory AT = (AS,K) with
AS = (L,R,), a set of queryables Q is a set of literals L such that K ⊆ Q ⊆ L
and if q ∈ Q then for each q′ ∈ q : q′ ∈ Q.

The set of queryables restricts the literals that can be added to the knowledge
base. Note that Definition 9 requires that all contradictories of each literal in Q
are also in Q. The reason for this is that contradictories can be seen as alternative
answers to a given query: when querying the environment (e.g., q?), both the
literal (q) and its contradictory (∈ q, e.g., ¬q) can be given as an answer and
added to the knowledge base. Adding a queryable literal q to the knowledge base
of an argumentation theory AT = (AS,K) (where q ∩ K = ∅) results in a new
argumentation theory AT′ = (AS,K ∪ {q}). The set of all argumentation theories
that can be obtained by adding queryables to the knowledge base is the set of
future argumentation theories.

Definition 10 (Future argumentation theories). The set of future argumenta-
tion theories FQ(AT) of an argumentation theory AT = (AS,K) given a set of

1See e.g. Bex and Verheij (2013) for the interplay between facts and law in a formal argumen-
tation setting.

13

queryables Q consists of all argumentation theories AT′ = (AS,K′) with K ⊆
K′ ⊆ Q.

Note that the argumentation theory AT always belongs to the set of future
argumentation theories FQ(AT). Further note that, since all future argumentation
theories in FQ(AT) are argumentation theories in the sense of Definition 3, their
knowledge base must be consistent.

Next, we formally define stability based on the notions of future argumentation
theories and the justification status of statements. We distinguish four types of
stability, relative to the four justification statuses from Definition 8.

Definition 11 (Stability). Let AT = (AS,K) be an argumentation theory where
AS = (L,R,) and Q is a set of queryables. Given a literal l ∈ L:

• l is stable-unsatisfiable in AT w.r.t. Q iff for each AT′ ∈ FQ(AT), l is
unsatisfiable in AT′;

• l is stable-defended in AT w.r.t. Q iff for each AT′ ∈ FQ(AT), l is defended
in AT′;

• l is stable-out in AT w.r.t. Q iff for each AT′ ∈ FQ(AT), l is out in AT′;

• l is stable-blocked in AT w.r.t. Q iff for each AT′ ∈ FQ(AT), l is blocked in
AT′.

A literal l ∈ L is stable in AT w.r.t. Q iff any of the above cases applies.

Example 4 (Example 3 continued). In our running example, the rounded squares
in Figure 1 represent queryables: the set of queryables Q = {sm,¬sm, sp,¬sp, rp,
¬rp, rm,¬rm, u,¬u, s,¬s, t,¬t, b,¬b}.

By querying the client agent, we could obtain more information; FQ(AT)
for example contains an argumentation theory with knowledge base K′ = K ∪
{¬sp} = {sm, b,¬rp, u, t,¬sp}. However, adding information does not influence
f ’s justification status: for each AT′ in FQ(AT), f is blocked in AT′. Therefore, f
is stable-blocked in AT w.r.t. Q.

3.2. A naive algorithm
The first solution that may come to one’s mind in order to detect if a literal

is stable in some argumentation theory w.r.t. the set of queryables could be an
algorithm that (1) generates all future argumentation theories for the given argu-
mentation theory; (2) computes the current justification status of the literal and

14

stores this as a justification label; and (3) assigns a stability label based on the
justification labels for the future argumentation theories. Such an algorithm, let
us call it STABILITY-NAIVE,2 is sound and complete, but also exponential: as-
suming that the contradiction function of the argumentation system is instantiated
as classical negation, each argumentation theory AT = (AS,K) has 3

1
2
|Q|−|K| fu-

ture argumentation theories. This is highly problematic for the runtime, as we
demonstrate with an experiment on the running example on online trade fraud
(Figure 1). Recall that this argumentation system has 24 literals (including nega-
tion), 16 of which are queryable, and 8 rules. For this experiment, we created a
data set of all 38 = 6561 argumentation theories that are in FQ((AS, ∅)). For each
of these argumentation theories, we executed STABILITY-NAIVE and measured
the computation time.3 The results are shown as boxplots grouped by the number
of unknown queryables (i.e. |Qpos| − |K| where Qpos is the set of all non-negated
queryables) in Figure 2.

From the figure it becomes clear that even for a simple argumentation system
such as our toy example, the exponential algorithm STABILITY-NAIVE cannot be
used for real-time inquiry, given that the computation would take multiple seconds
for each step in the inquiry dialogue. For the argumentation theory in which the
knowledge base is empty, so eight queryables are unknown, the computation time
is over 2500ms. To explicate the exponential computation time of STABILITY-
NAIVE, we plotted the line 0.392 · 3|Qpos|−|K|, which fits nicely with the measured
computation times, in red. Assuming that this formula can be used to extrapolate
the computation time to inputs with a larger number of unknown queryables, the
expected computation time would be 1 hour and 33 minutes in an application
where |Qpos| − |K| = 15; if |Qpos| − |K| = 20, it would take over two weeks.
As will become clear in Section 5 on case studies, this number of queryables is
common for realistic applications; for example, the argumentation system that we
use for actual trade fraud intake has a Qpos of 15 positive queryables.

Note that we do not claim that each sound and complete algorithm for comput-
ing stability is as slow as STABILITY-NAIVE. We can imagine several improve-
ments on the algorithm, such as only considering those unknown queryables that
influence a particular literal for which we want to know the stability status (see
Alfano et al. (2021) for a comparable approach on a related problem) and/or more

2Defining the algorithm would be outside the scope of this paper, but we provide the source
code in our GitHub repository at https://github.com/DaphneO/StabilityLabelAlgorithm.

3All experiments in this paper (including the ones in Section 4.2.5 and 5.1.3) were run on a
Intel(R) Core(TM) i7-7820HQ CPU 2.90 GHz 16 GB RAM machine.

15

https://github.com/DaphneO/StabilityLabelAlgorithm

0 1 2 3 4 5 6 7 8

Number of unknown queryables (|Qpos | − |K|)

0

500

1000

1500

2000

2500

3000

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Figure 2: Computation time of STABILITY-NAIVE, applied to the 38 argumentation theo-
ries that are in FQ((AS, ∅)) for the literal f , where AS and Q are the argumentation system
and set of queryables from our running example in Figure 1. The results are shown as box-
plots grouped by the number of unknown queryables. The red dotted line is the formula
g(x) = 0.392 · x3 and indicates that the computation time grows exponentially with the
number of unknown queryables.

efficient searching by SAT-based approaches (similar to Niskanen and Järvisalo
(2020)). However, algorithms based on these ideas do not yet exist for ASPIC+

and implementing these improvements is beyond the scope of this paper. More-
over, speeding up the computation this way does not solve the issue of expo-
nentially growing computation time. In the next section, we will show that the
problem of deciding if a literal is stable is CoNP-complete, which means that it is
unlikely that an exact polynomial-time algorithm exists.

3.3. The complexity of the stability problem
In this section, we discuss the complexity of the stability problem. Consider

an argumentation theory AT = (AS,K) where AS = (L,R,) and Q is the set
of queryable literals; we define STABILITY as the problem of deciding if a literal
l ∈ L is stable in AT w.r.t. Q.

Proposition 1 (Complexity of STABILITY problem). Given an argumentation the-
ory AT = (AS,K) where AS = (L,R,) and Q is a set of queryables, the STA-
BILITY problem is CoNP-complete.

16

t

c1 . . . cn

l11 . . . l1k ln1 . . . lnm

Figure 3: Reduction UNSAT.

Proof sketch. CoNP-hardness can be shown by a polynomial-time reduction from
the CoNP-complete problem UNSAT. Given a CNF formula ϕ = (l11 ∨ . . . ∨
l1k) ∧ . . . ∧ (ln1 ∨ . . . ∨ lnm), we could transform ϕ into the argumentation theory
AT = (AS,K) and the set of queryables Q shown in Figure 3. In this reduction, ϕ
is unsatisfiable iff t is stable-unsatisfiable in AT w.r.t. Q.

Furthermore, STABILITY is in CoNP: a certificate would be an argumentation
theory AT′ ∈ FQ(AT) such that the justification status of t in AT′ differs from t’s
justification status in AT. We can check in polynomial time if AT′ ∈ FQ(AT);
furthermore, the justification status of a literal in a given argumentation theory
can be checked in polynomial time.

The full proof can be found in Appendix B.1.

3.4. Handling complexity with approximation algorithms
In the previous section, we have shown that the STABILITY problem is CoNP-

complete. Under the assumption that P ̸= NP, problems in this complexity class
are considered intractable: each sound and complete algorithm for computing sta-
bility has some exponential component that will eventually result in intolerably
high runtimes for some inputs. This means that an exact algorithm for stability
would need exponential time. Practical applications, such as our inquiry agents
at the police, require fast computation for arbitrary argumentation theories. Com-
mon approaches to deal with hard problems in argumentation are either exact
algorithms based on SAT-solvers or approximation algorithms. SAT-based ap-
proaches, such as Niskanen and Järvisalo (2020), are exact (sound and complete)
and can solve many instances efficiently, although the worst-case time complexity
is still exponential. An alternative to sound and complete algorithms is to use an
approximation that is sound, complete or neither. Popular approaches in this area
are to apply data-driven techniques or devise direct approximation algorithms.

17

Data-driven techniques such as neural networks have the benefit of predictable
computational cost but provide no soundness guarantee (see e.g. Craandijk and
Bex (2020)). For the police this is problematic; often it is better to accidentally
collect too much information than to make a wrong decision. We therefore prefer
direct approximation algorithms over data-driven techniques.

Our contribution is to specify a polynomial algorithm for stability approxima-
tion that is sound, but not complete. This way, we can guarantee fast computa-
tion for arbitrary argumentation theories and ensure that more information cannot
change the justification status of any literal that is labelled stable.

4. Approximating stability

In this section, we propose our algorithm for approximating stability. Subse-
quently, we show soundness and conditional completeness and study the compu-
tational complexity of this algorithm.

4.1. Stability approximation algorithm
Our algorithm for approximating stability iteratively constructs a labelling that

assigns a label to each literal and rule. Before explaining how the algorithm
achieves such a labelling, we will first illustrate how such a labelling should look
like by showing the correct labelling for an example argumentation theory in Sec-
tion 4.1.1. Having observed some properties of this labelling, we subsequently
explain our proposed procedure to approximate this labelling in Sections 4.1.2
and 4.1.3.

4.1.1. Desired stability labelling
In order to decide if a literal is stable, our algorithm uses a labelling L that

assigns a quadruple of four booleans ⟨u, d, o, b⟩ (i.e. a label) to each literal and
rule. Each of these booleans corresponds to a justification status. Intuitively, the
truth value of a boolean belonging to a literal represents the possibility that this
literal can still become stable-unsatisfiable (u), stable-defended (d), stable-out (o)
or stable-blocked (b) in a future argumentation theory. Rules are assigned a label
as well, because this helps in efficiently computing the labels of their conclusion
literals. The label assigned to a given rule aggregates information from labels
assigned to its antecedents. If only one of the booleans in a label of some literal
or rule is True, then that literal or rule is labelled stable, as formally defined next.

Definition 12 (Labelled stable). Given a label L[x] for some literal or rule x ∈
L ∪R:

18

• x is labelled stable-unsatisfiable by L iff L[x] = ⟨1, 0, 0, 0⟩;

• x is labelled stable-defended by L iff L[x] = ⟨0, 1, 0, 0⟩;

• x is labelled stable-out by L iff L[x] = ⟨0, 0, 1, 0⟩;

• x is labelled stable-blocked by L iff L[x] = ⟨0, 0, 0, 1⟩.

A literal or rule x ∈ L ∪R is labelled stable by L iff any of the above applies.

In Example 5, we will clarify which labelling our algorithm tries to obtain by
showing the correct labels for an example argumentation theory. Note that this
example does not yet describe the labelling procedure, but rather motivates the
literal labels that it tries to achieve.

q1
⟨1, 1, 0, 0⟩

¬q1
⟨1, 1, 0, 0⟩

¬p
⟨1, 0, 0, 1⟩

p
⟨0, 1, 0, 1⟩

t
⟨0, 0, 0, 1⟩

q2
⟨0, 1, 0, 0⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨0, 1, 0, 0⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨0, 1, 0, 0⟩

¬t
⟨0, 0, 0, 1⟩

¬s
⟨1, 0, 1, 0⟩

q4
⟨1, 0, 1, 0⟩

¬q4
⟨0, 1, 0, 0⟩

q5
⟨1, 1, 0, 0⟩

¬q5
⟨1, 1, 0, 0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

Figure 4: Argumentation theory illustrating the ground-truth ⟨u, d, o, b⟩-labelling of liter-
als.

Example 5 (Stability labelling). In Figure 4, we give an example of an argumen-
tation theory AT = (AS,K) where AS = (L,R,) and ⟨u, d, o, b⟩ is the stability
labelling that should be found by a sound and complete stability labelling algo-
rithm. The set of queryables Q is {q1, . . . , q5} ∪ {¬q1, . . . ,¬q5}. From these
queryables, q2, q3 and ¬q4 are observed in AT (i.e., in K), while q1, ¬q1, q5 and
¬q5 can still be observed in a future argumentation theory AT′ ∈ FQ(AT).

Some literals are already stable:

• each literal l in {¬q2,¬q3, x,¬x, y,¬y, z,¬z} is stable-unsatisfiable (label:
⟨1, 0, 0, 0⟩) because there is no rule for l and either l /∈ Q or there is some
contradictory l′ ∈ l such that l′ ∈ K;

19

• q2, q3, ¬q4 and s are stable-defended (label: ⟨0, 1, 0, 0⟩) because there is an
argument for these literals that cannot be attacked; and

• t and ¬t are stable-blocked (label: ⟨0, 0, 0, 1⟩) because the arguments for
these literals attack each other, but neither is in the grounded extension.

Other literals are not yet stable, but can become stable in a future argumentation
theory. Consider for example the argumentation theory AT′ = (AS,K ∪ {q1}) in
FQ(AT). In AT′, the literal q1 would be stable-defended; ¬q1 would be stable-
unsatisfiable and both ¬p and p become stable-blocked in AT′ w.r.t. Q. An alter-
native argumentation theory in FQ(AT) is AT′′ = (AS,K∪{¬q1}), where ¬q1 and
p become stable-defended, while q1 and ¬p are stable-unsatisfiable in AT′′ w.r.t.
Q. Similarly, adding either q5 or ¬q5 would make each literal in {q5,¬q5, q4,¬s}
stable.

Finally, recall from Section 2.3 that the distinction between the out and blocked
justification status is convenient for our algorithm. This can be seen by consider-
ing the difference in statuses for p and s. Both literals have a contradictory that
cannot become stable-defended in any future argumentation theory (¬p and ¬s,
respectively). However, ¬s cannot be stable-blocked in any future argumentation
theory (given that each argument for ¬s is attacked by the observation-based ar-
gument for ¬q4), which means that s is stable-defended. On the other hand, ¬p
can still become stable-blocked (by adding q1 to the knowledge base), so p is not
stable-defended but can still become stable-blocked.

Based on the example above, we can make three general remarks about the
desired labelling:

Remark 1 The labels of literals depend on the labels of antecedents of rules for
those literals, as well as of antecedents of rules for contradictories of those
literals. For example, the status of t depends on the status of p and the
status of s. In addition, the labels of queryable literals also depend on their
presence (or one of their contradictories’ presence) in the knowledge base:
the status of q4 depends on the status of q5, but also on the presence of ¬q4
in the knowledge base.

Remark 2 It is not always required that each of these antecedents is stable for the
conclusion literal to be stable. For example: t and ¬t are stable although p
is not stable. s is stable although q4 is not stable.

20

Remark 3 The rule set of an argumentation theory can contain cycles of support
relations, such as the cycle x ⇒ y, y ⇒ z, z ⇒ x in the example.

We take these three remarks into account in our proposed labelling procedure.
By Remark 1, the labels of rules depend on the labels of their antecedent literals,
while labels of literals depend on the labels of rules for that literal or for one of its
contradictories. Literals and rules are labelled bottom-up, starting from queryable
literals and literals for which there is no rule and relabelling literals and rules
based on the resulting new labels, until no new label can be added. By Remark 2,
the information contained in the labelling should be more precise than a single
label indicating if the literal is stable or not. For example, if we only had one label
for literals that are not stable, it would not be possible to label s in Example 5 as
stable, since it depends on the literal q4 that would just be labelled as not stable.
Therefore, we propose to assign quadruple labels ⟨u, d, o, b⟩ to each literal and
rule. By Remark 3, it is necessary to correctly handle cycles of support relations.
We deal with this in a preprocessing step.

In the following two subsections, we will describe the algorithm in two steps:
a preprocessing step and the main labelling procedure.

4.1.2. Preprocessing
Our algorithm starts with a preprocessing step. This enables the algorithm to

properly deal with argumentation theories containing support cycles, i.e. cycles of
inference relations based on which no argument can be constructed. For example,
consider the inference relation between the literals x, y and z in Figure 4. None
of these literals are queryable, so there is no future argumentation theory in which
there is an observation-based argument for any of them. Since there are no other
rules for any of these literals, other than the three rules x ⇒ y, y ⇒ z and z ⇒ x
that form a cycle, these three rules form a support cycle. Support cycles can
be problematic for defeasible reasoning algorithms, when not handled properly.
In Odekerken et al. (2020), we showed that an initial version of our algorithm for
stability, proposed in Testerink et al. (2019b), does not label literals and rules that
are dependent on support cycles: in a bottom-up labelling procedure, there is no
place to start labelling.

The preprocessing step is specified in Algorithm 1. The idea of this algorithm
is that initially, all literals that cannot be in the knowledge base in a future ar-
gumentation theory and all rules are labelled ⟨1, 0, 0, 0⟩ (i.e. stable-unsatisfiable).
Then, the algorithm incrementally labels those rules for which all antecedents are
not labelled ⟨1, 0, 0, 0⟩ and their consequents as ⟨1, 1, 1, 1⟩ (i.e. may still become

21

unsatisfiable, defended, out or blocked) based on the intuition that there may be
an argument based on these rules in a future argumentation theory.

Algorithm 1 Preprocessing step
1: procedure PREPROCESS(L,R, ,Q,K)
2: for Literal l in L do
3: if l ∈ Q and for each l′ ∈ l: l′ /∈ K then L[l] = ⟨1, 1, 1, 1⟩
4: else L[l] = ⟨1, 0, 0, 0⟩
5: for Rule r in R do
6: L[r] = ⟨1, 0, 0, 0⟩
7: Change = True
8: while Change do
9: Change = False

10: for Rule r in R do
11: if L[r] = ⟨1, 0, 0, 0⟩ and for each l ∈ ants(r): L[l] ̸= ⟨1, 0, 0, 0⟩

then
12: L[r] = ⟨1, 1, 1, 1⟩
13: L[cons(r)] = ⟨1, 1, 1, 1⟩
14: Change = True
15: return L

q1
⟨1, 1, 1, 1⟩

¬q1
⟨1, 1, 1, 1⟩

¬p
⟨1, 1, 1, 1⟩

p
⟨1, 1, 1, 1⟩

t
⟨1, 1, 1, 1⟩

q2
⟨1, 1, 1, 1⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨1, 1, 1, 1⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨1, 1, 1, 1⟩

¬t
⟨1, 1, 1, 1⟩

¬s
⟨1, 1, 1, 1⟩

q4
⟨1, 1, 1, 1⟩

¬q4
⟨1, 1, 1, 1⟩

q5
⟨1, 1, 1, 1⟩

¬q5
⟨1, 1, 1, 1⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1, 1, 1, 1⟩

⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩

⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩⟨1, 0, 0, 0⟩

Figure 5: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of literals and rules
after the preprocessing step.

Example 6 (Preprocessing step). We return to the argumentation theory AT =
(AS,K) where AS = (L,R,), with queryables Q, from Example 5 and Figure 4.

22

Let Lp = PREPROCESS(L,R, ,Q,K). The labelling Lp is illustrated in Fig-
ure 5. The literals in {¬q2,¬q3, x,¬x, y,¬y, z,¬z} are labelled ⟨1, 0, 0, 0⟩ by Lp.
For each other literal l in L: Lp[l] = ⟨1, 1, 1, 1⟩. Further note that the rules in
and from the support cycle, i.e. x ⇒ y, y ⇒ z, z ⇒ x and x ⇒ t, are labelled
⟨1, 0, 0, 0⟩. The other rules are labelled ⟨1, 1, 1, 1⟩ by Lp.

4.1.3. Quadruple labelling procedure
The result of the preprocessing procedure is an initial labelling Lp for each

of the literals and rules in our argumentation system. After preprocessing, we
apply a bottom-up labelling procedure that updates the quadruple of four booleans
⟨u, d, o, b⟩ for each literal and rule, resulting in the final labelling L. Algorithm 4
specifies how literals and rules are visited in the labelling procedure, where literals
and rules are labelled according to the labelling rules specified in Algorithm 2
and 3. We will discuss both the labelling rules and the labelling procedure, starting
with the labelling rules.

In Section 4.1.1 we observed that there are cases in which a literal should be
labelled stable, although it is dependent on literals that are not yet labelled stable
(Remark 2). Because of this, a labelling that assigns a single label (e.g. stable-
unsatisfiable / stable-defended / stable-out / stable-blocked / unstable) to literals
and rules does not suffice. This is one of the reasons why our initial algorithm
for stability (Testerink et al., 2019b), which assigns a single label, detects fewer
stable situations than our more recent proposal in Odekerken et al. (2020), which
assigns a quadruple label ⟨u, d, o, b⟩ consisting of four booleans to each label and
rule. The labelling rules in these algorithms require some additional notation for
indexing single booleans of labels:

Notation 1 (Indexing of label parts). Given a label L[x] = ⟨u, d, o, b⟩ for some
literal or rule x ∈ L ∪R, we refer to the u- (resp. d-, o-, b-) boolean of L[x] with
L[x].u (resp. L[x].d, L[x].o, L[x].b).

Our labelling rules are an extension of the labelling rules in Odekerken et al.
(2020) in the sense that we account for a general contradiction function rather
than classical negation. In RELABEL-LITERAL (Algorithm 2) and RELABEL-
RULE (Algorithm 3) we specify how the labels of literals and rules are updated.
Note that each of these labelling rules is able to turn a boolean (u, d, o or b) to
False, but none of them is able to turn a boolean to True.

Example 7 (Quadruple labelling rules). We return to the argumentation theory
from Figure 4 and Examples 5 and 6. Some labelling rules for literals in RELABEL-
LITERAL (Algorithm 2) are not dependent on rules for (a contradictory of) that

23

Algorithm 2 RELABEL-LITERAL procedure
1: procedure RELABEL-LITERAL(L,R, ,Q,K, L, l)
2: ▷ Labelling rules turning L[l].u to False
3: if l ∈ K then L[l].u = False ▷ L-U-a
4: if there is a rule r for l with ¬L[r].u then L[l].u = False ▷ L-U-b

5: ▷ Labelling rules turning L[l].d to False
6: if some l′ ∈ l is in K then L[l].d = False ▷ L-D-a
7: if l /∈ Q then
8: if for each rule r for l: ¬L[r].d then L[l].d = False ▷ L-D-b
9: if there is some l′ ∈ l for which there is a rule r′ with ¬L[r′].u and

¬L[r′].o then L[l].d = False ▷ L-D-c

10: ▷ Labelling rules turning L[l].o to False
11: if l ∈ K then L[l].o = False ▷ L-O-a
12: if l ∈ Q and for each l′ ∈ l, some l′′ ∈ l′ is in K then
13: if for each rule r for l: ¬L[r].o then L[l].o = False ▷ L-O-b
14: if there is a rule r for l with ¬L[r].u and ¬L[r].o then L[l].o = False ▷

L-O-c
15: if l /∈ Q then
16: if for each rule r for l: ¬L[r].o then L[l].o = False ▷ L-O-d
17: if there is a rule r for l with ¬L[r].u and ¬L[r].o then L[l].o = False ▷

L-O-e
18: if for each rule r for l: ¬L[r].d and ¬L[r].o and ¬L[r].b then L[l].o =

False ▷ L-O-f

19: ▷ Labelling rules turning L[l].b to False
20: if l ∈ Q then L[l].b = False ▷ L-B-a
21: if for each rule r for l: ¬L[r].d and ¬L[r].b then L[l].b = False ▷ L-B-b
22: if for each l′ ∈ l: for each rule r′ for l′: ¬L[r′].d and ¬L[r′].b then
23: if for each rule r for l: ¬L[r].b then L[l].b = False ▷ L-B-c
24: if there is a rule r for l with ¬L[r].u and ¬L[r].o and ¬L[r].b then

L[l].b = False ▷ L-B-d
25: return L

24

Algorithm 3 RELABEL-RULE procedure
1: procedure RELABEL-RULE(L,R, L, r)
2: if for each antecedent l of r: ¬L[l].u then L[r].u = False ▷ R-U-a
3: if there is an antecedent l of r with ¬L[l].d then L[r].d = False ▷ R-D-a
4: if for each antecedent l of r: ¬L[l].o then L[r].o = False ▷ R-O-a
5: if for each antecedent l of r: ¬L[l].b then L[r].b = False ▷ R-B-a
6: if there is an antecedent l of r with ¬L[l].d and ¬L[l].b then L[r].b = False

▷ R-B-b
7: return L

literal. For example, case L-B-a already labels a literal l ∈ L as ¬L[l].b if l ∈ Q.
This labelling rule applies for the literals in {q1, . . . , q5}∪{¬q1, . . . ,¬q5}, because
they are queryable. Case L-U-a and L-O-a apply if a literal is in the knowledge
base K. Thanks to these labelling rules, the literals l ∈ {q2, q3,¬q4} in the exam-
ple will be labelled ¬L[l].u and ¬L[l].o. Finally, case L-D-a does not depend on
rules either: for a given literal l ∈ L, it applies if there is some l′ ∈ l such that
l′ ∈ K. This case applies for the literals ¬q2, ¬q3 and q4. Note that the absence
of rules for a literal is informative for the justification status as well: for example,
the literal q1 is labelled ¬L[q1].o by case L-O-f because there is no rule for q1 in
R.

Other labels are based on the rules for (a contradictory of) a literal and prop-
agate properties of (attacks on) subarguments. For example, the rule q3 ⇒ s is
labelled ⟨0, 1, 0, 0⟩ by RELABEL-RULE’s cases R-U-a, R-O-a and R-B-a (and the
fact that its only antecedent q3 is labelled ⟨0, 1, 0, 0⟩). Similarly, the rule q4 ⇒ ¬s
is labelled ⟨1, 0, 1, 0⟩ by the cases R-D-a and R-B-a (or R-B-b). Note that this rule
cannot be labelled stable. Still, although the literal s is dependent on a rule that
is not labelled stable, we can label s as stable: L[s] = ⟨0, 1, 0, 0⟩ by RELABEL-
LITERAL’s cases L-U-b, L-O-d and L-B-c (or L-B-d). Other literals, such as p,
cannot be labelled stable, but still we can exclude some stability statuses: p can
never be stable-unsatisfiable (case L-U-b) or stable-out (case L-O-d) w.r.t. Q in
any future argumentation theory.

Finally, we discuss the algorithm that visits the literals and rules, repeatedly
applying Algorithm 2 and 3. As identified in Remark 1 in Section 4.1.1, the labels
of literals depend on the antecedents of rules for those literals and for contradic-
tories of those literals; labels of queryable literals also depend on the knowledge
base. Therefore, STABILITY-LABEL (Algorithm 4) starts by labelling those liter-
als that are queryable or for which there is no rule, see lines 4–6. Then, literals and

25

Algorithm 4 Labelling procedure STABILITY-LABEL

1: procedure STABILITY-LABEL(L,R, ,Q,K)
2: L = PREPROCESS(L,R, ,Q,K)
3: TODO-SET = empty set
4: for Literal l in L such that l ∈ Q or there is no rule for l in R do
5: L = RELABEL-LITERAL(L,R, ,Q,K, L, l)
6: Add all rules having l as antecedent to TODO-SET

7: while TODO-SET is not empty do
8: Pop a rule r from TODO-SET

9: L = RELABEL-RULE(L,R, L, r)
10: if r’s label changed then
11: L = RELABEL-LITERAL(L,R, ,Q,K, L, cons(r))
12: if cons(r)’s label changed then
13: Add all rules having cons(r) as antecedent to TODO-SET

14: for l′ ∈ cons(r) do
15: L = RELABEL-LITERAL(L,R, ,Q,K, L, l′)
16: if l′’s label changed then
17: Add all rules having l′ as antecedent to TODO-SET

18: return L

26

rules are labelled incrementally: after considering a literal for the first time (line 6)
or changing a literal (line 13 and 16), the label of each rule that has this literal as an
antecedent is added to the set TODO-SET and therefore at some point considered
for relabelling. The algorithm ends when the TODO-SET is empty (line 7): at this
moment, the labelling has reached a fixed point and cannot change any more. We
give some intuition by labelling the example from the beginning of this section.

Example 8 (Labelling step). We return to the argumentation theory from Figure 4
and Examples 5–7 and show how literals and rules are considered for (re)labelling
by Algorithm 4.

First, note that the literals x, y and z are never reconsidered for relabelling
after the preprocessing step, since they are not queryable and there is no rule for
those literals that can change its label. Therefore, the labels in L assigned to these
literals equal the labels in Lp, that is: ⟨1, 0, 0, 0⟩ (as shown in Example 6).

All queryables in Q, as well as the literals ¬x, ¬y and ¬z, for which there is
no rule, are considered for relabelling in Algorithm 4 line 5; see Figure 6. For
the queryable literals, RELABEL-LITERAL case L-B-a applies. As a result, the
b-boolean is turned to False: there is no future argumentation theory AT′ such that
queryable literals are stable-blocked in AT′ w.r.t. Q. Furthermore, q2, q3 and ¬q4
are in the knowledge base. Therefore, the u- and o-booleans for these literals are
turned to False by case L-U-a and L-O-a. For ¬q2, ¬q3 and q4, case L-D-a applies,
since they have a contradictory in the knowledge base. As a result, the d-boolean
is turned to False. Finally, the o-booleans of q1, ¬q1, ¬q2, ¬q3, q5 and ¬q5 are
turned to False by case L-O-f.

After relabelling of aforementioned literals, the rules q1 ⇒ ¬p, q2 ⇒ p, q3 ⇒
s, q5 ⇒ q4 and q4 ⇒ ¬s are added to TODO-SET. Suppose that the rule q1 ⇒ ¬p
is selected first from TODO-SET (this order is arbitrary). This rule is labelled
⟨1, 1, 0, 0⟩ by case R-O-a and R-B-a, as illustrated in Figure 7. Since this rule’s
label changed, the literals ¬p and p are considered for relabelling by RELABEL-
LITERAL as well. Then the label of ¬p changes into ⟨1, 1, 0, 1⟩ (by case L-O-d).
The label of p does not change, so the rule p ⇒ t is not yet added to TODO-SET.

In the next iteration of the while loop, the rule q2 ⇒ p is selected from TODO-
SET and relabelled as ⟨0, 1, 0, 0⟩ by case R-U-a, R-O-a and R-B-a of RELABEL-
RULE; see Figure 8. After this, both p and ¬p are reconsidered for relabelling.
Since the label of p changes, the rule p ⇒ t is added to TODO-SET.

In additional iterations of the while loop the rules q3 ⇒ s, q4 ⇒ ¬s and
q5 ⇒ q4 are selected from TODO-SET, so that these rules, their consequents and
the contradictories of those contradictories can be relabelled. The result after this

27

iteration is shown in Figure 9.
Subsequently, the rules p ⇒ t and s ⇒ ¬t are considered for relabelling by

RELABEL-RULE. For both rules, the u-booleans and o-booleans are turned to
False by case R-U-a and R-O-a, respectively. Furthermore, s ⇒ ¬t is labelled
¬L[s ⇒ ¬t].b by case R-B-a. Finally, t and ¬t are relabelled: L[t] = L[¬t] =
⟨0, 0, 0, 1⟩ by case L-U-b, L-D-c, L-O-d. Note that the resulting labelling of liter-
als, illustrated in Figure 10, exactly matches the desired stability labelling shown
in Figure 4.

q1

⟨1,1,0,0⟩

¬q1

⟨1,1,0,0⟩

¬p
⟨1, 1, 1, 1⟩

p
⟨1, 1, 1, 1⟩

t
⟨1, 1, 1, 1⟩

q2

⟨0,1,0,0⟩

¬q2

⟨1,0,0,0⟩

q3

⟨0,1,0,0⟩

¬q3

⟨1,0,0,0⟩

s
⟨1, 1, 1, 1⟩

¬t
⟨1, 1, 1, 1⟩

¬s
⟨1, 1, 1, 1⟩

q4

⟨1,0,1,0⟩
¬q4

⟨0,1,0,0⟩

q5

⟨1,1,0,0⟩
¬q5

⟨1,1,0,0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1,0,0,0⟩

¬y
⟨1,0,0,0⟩

¬z
⟨1,0,0,0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1, 1, 1, 1⟩*

⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩*

⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩⟨1, 0, 0, 0⟩

Figure 6: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of STABILITY-
LABEL between lines 6 and 7. All literals that have been considered for relabelling by
RELABEL-LITERAL are illustrated in boldface. The rules in TODO-SET are indicated with
an asterisk.

In our running example, we have seen that our algorithm STABILITY-LABEL

is able to find the accurate stability labelling for a specific argumentation theory.
Keep in mind that this is not the case for every possible argumentation theory:
STABILITY-LABEL is an approximation algorithm, in which we sacrificed perfect
accuracy for fast computation. In the next subsection, we will prove properties of
the proposed algorithm: we will show that it is sound, identify conditions under
which it is complete and prove that it runs in polynomial time.

4.2. Properties of the proposed algorithm
In this subsection, we present various properties of STABILITY-LABEL. We

start by conducting an accuracy analysis experiment on the argumentation sys-
tem of our running example on online trade fraud in Section 4.2.1. We subse-
quently consider STABILITY-LABEL’s soundness in Section 4.2.2, discuss con-

28

q1
⟨1, 1, 0, 0⟩

¬q1
⟨1, 1, 0, 0⟩

¬p
⟨1,1,0,1⟩

p
⟨1,1,1,1⟩

t
⟨1, 1, 1, 1⟩

q2
⟨0, 1, 0, 0⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨0, 1, 0, 0⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨1, 1, 1, 1⟩

¬t
⟨1, 1, 1, 1⟩

¬s
⟨1, 1, 1, 1⟩

q4
⟨1, 0, 1, 0⟩

¬q4
⟨0, 1, 0, 0⟩

q5
⟨1, 1, 0, 0⟩

¬q5
⟨1, 1, 0, 0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1, 1, 1, 1⟩*

⟨1,1,0,0⟩ ⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩*

⟨1, 1, 1, 1⟩ ⟨1, 1, 1, 1⟩⟨1, 0, 0, 0⟩

Figure 7: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of STABILITY-
LABEL after the first iteration of the while-loop, where the rule q1 ⇒ ¬p has been selected
from TODO-SET. All literals that have been considered for relabelling by RELABEL-
LITERAL are illustrated in boldface. The rules in TODO-SET are indicated with an aster-
isk.

q1
⟨1, 1, 0, 0⟩

¬q1
⟨1, 1, 0, 0⟩

¬p
⟨1,0,0,1⟩

p
⟨0,1,0,1⟩

t
⟨1, 1, 1, 1⟩

q2
⟨0, 1, 0, 0⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨0, 1, 0, 0⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨1, 1, 1, 1⟩

¬t
⟨1, 1, 1, 1⟩

¬s
⟨1, 1, 1, 1⟩

q4
⟨1, 0, 1, 0⟩

¬q4
⟨0, 1, 0, 0⟩

q5
⟨1, 1, 0, 0⟩

¬q5
⟨1, 1, 0, 0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1, 1, 1, 1⟩*

⟨1, 1, 0, 0⟩ ⟨0,1,0,0⟩ ⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩*

⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩⟨1, 0, 0, 0⟩

Figure 8: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of STABILITY-
LABEL after the second iteration of the while-loop, where the rule q2 ⇒ p has been
selected from TODO-SET. All literals that have been considered for relabelling by
RELABEL-LITERAL are illustrated in boldface. The rules in TODO-SET are indicated
with an asterisk.

29

q1
⟨1, 1, 0, 0⟩

¬q1
⟨1, 1, 0, 0⟩

¬p
⟨1, 0, 0, 1⟩

p
⟨0, 1, 0, 1⟩

t
⟨1, 1, 1, 1⟩

q2
⟨0, 1, 0, 0⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨0, 1, 0, 0⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨0,1,0,0⟩

¬t
⟨1, 1, 1, 1⟩

¬s
⟨1,0,1,0⟩

q4

⟨1,0,1,0⟩
¬q4

⟨0, 1, 0, 0⟩

q5
⟨1, 1, 0, 0⟩

¬q5
⟨1, 1, 0, 0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1,1,0,0⟩

⟨1, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩ ⟨0,1,0,0⟩ ⟨1,0,1,0⟩

⟨1, 1, 1, 1⟩* ⟨1, 1, 1, 1⟩*⟨1, 0, 0, 0⟩

Figure 9: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of STABILITY-
LABEL after the fifth iteration of the while-loop, where the rules q3 ⇒ s, q5 ⇒ q4
and q4 ⇒ ¬s have been selected from TODO-SET. All literals that have been considered
for relabelling by RELABEL-LITERAL are illustrated in boldface. The rules in TODO-SET

are indicated with an asterisk.

q1
⟨1, 1, 0, 0⟩

¬q1
⟨1, 1, 0, 0⟩

¬p
⟨1, 0, 0, 1⟩

p
⟨0, 1, 0, 1⟩

t
⟨0, 0, 0, 1⟩

q2
⟨0, 1, 0, 0⟩

¬q2
⟨1, 0, 0, 0⟩

q3
⟨0, 1, 0, 0⟩

¬q3
⟨1, 0, 0, 0⟩

s
⟨0, 1, 0, 0⟩

¬t
⟨0, 0, 0, 1⟩

¬s
⟨1, 0, 1, 0⟩

q4
⟨1, 0, 1, 0⟩

¬q4
⟨0, 1, 0, 0⟩

q5
⟨1, 1, 0, 0⟩

¬q5
⟨1, 1, 0, 0⟩

x
⟨1, 0, 0, 0⟩

y
⟨1, 0, 0, 0⟩

z
⟨1, 0, 0, 0⟩

¬x
⟨1, 0, 0, 0⟩

¬y
⟨1, 0, 0, 0⟩

¬z
⟨1, 0, 0, 0⟩

⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 0⟩

⟨1
,0
,0
,0
⟩

⟨1, 1, 0, 0⟩

⟨1, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩ ⟨1, 0, 1, 0⟩

⟨0, 1, 0, 1⟩ ⟨0, 1, 0, 0⟩⟨1, 0, 0, 0⟩

Figure 10: Argumentation theory illustrating the ⟨u, d, o, b⟩-labelling of STABILITY-
LABEL after the final iteration of the while-loop, where the rules p ⇒ t and s ⇒ ¬t
have been selected from TODO-SET. Note that the resulting labels for literals correspond
to the desired labels as illustrated in Figure 4.

30

ditional completeness in Section 4.2.3 and finally analyze the algorithm’s time
complexity and computation time4 in Sections 4.2.4 and 4.2.5.

As before, the proofs of the lemmas and propositions in this section can be
found in Appendix B. Many of these lemmas depend on additional lemmas in the
appendix that were too specific to include in the paper, but may be interesting for
the reader who wants to know more about the properties of STABILITY-LABEL.
An example is Lemma 9, which guarantees that no literal or rule will have the
label ⟨0, 0, 0, 0⟩.

4.2.1. Experimental accuracy analysis
The performance of STABILITY-LABEL in terms of accuracy can be assessed

empirically for a given argumentation system AS = (L,R,), topic literal l ∈ L
and set of queryables Q as follows: first, compute the accuracy of STABILITY-
LABEL by generating all future argumentation theories FQ((AS, ∅)); then verify
for each AT′ ∈ FQ((AS, ∅)) if the stability label estimated by STABILITY-LABEL

matches the ground truth stability label, that can be obtained by for example the
STABILITY-NAIVE algorithm from Section 3.2.

The confusion matrix in Table 1 shows the performance of the stability algo-
rithm on the toy example on fraud of Figure 1, where the topic literal is fraud. For
each of the 6551 possible argumentation theories that can be constructed from the
argumentation system and set of queryables, the label obtained by STABILITY-
LABEL is compared to the ground truth label.

Ground truth
⟨0, 0, 0, 1⟩ ⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 1⟩ ⟨1, 0, 0, 0⟩ ⟨1, 0, 0, 1⟩ ⟨1, 1, 0, 0⟩ ⟨1, 1, 0, 1⟩ Total

St
ab

ili
ty

al
go

ri
th

m ⟨0, 0, 0, 1⟩ 27 0 0 0 0 0 0 27
⟨0, 1, 0, 0⟩ 0 108 0 0 0 0 0 108
⟨0, 1, 0, 1⟩ 0 0 27 0 0 0 0 27
⟨1, 0, 0, 0⟩ 0 0 0 3729 0 0 0 3729
⟨1, 0, 0, 1⟩ 0 0 0 0 189 0 0 189
⟨1, 0, 1, 0⟩ 0 0 0 144 0 1124 0 1268
⟨1, 0, 1, 1⟩ 0 0 0 288 152 304 469 1213

Total 27 108 27 4161 341 1428 469 6551

Table 1: Confusion matrix showing the performance of STABILITY-LABEL on the toy
example on fraud of Figure 1. The topic literal is fraud.

The accuracy of STABILITY-LABEL for a given argumentation system and set
of queryables can be computed by computing the fraction of future argumentation

4In addition, we discuss empirical results on our case studies in Section 5.

31

theories in FQ((AS, ∅)) in which the topic literal is correctly labelled as (not)
stable.

Accuracy =
True Positives + True Negatives

All
=

3864 + 2265

6551
= 93.4%

Note that the number of false positives is 0, so for each argumentation theory
based on the argumentation system: if the literal fraud is not stable in that argu-
mentation theory, then it is not labelled as stable by the stability algorithm – or,
by contraposition: if fraud is labelled as stable by STABILITY-LABEL, then it is
stable. This means that our algorithm is sound for fraud in the argumentation the-
ory of Figure 1. In the next section, we will show that the algorithm is sound in
general.

When analysing the errors, it becomes clear that for each of the knowledge
bases K such that the estimated stability label of fraud in (AS,K) is incorrect
both b /∈ K and ¬b /∈ K. So for each argumentation theory (AS,K) such that
b ∈ K or ¬b ∈ K, the accuracy is 100%. This means that it would be a good
idea to ask b at an early stage of the dialogue. On a more general note: the order
of asking questions influences the performance of the stability algorithm in an
inquiry dialogue. Furthermore, the performance of the stability algorithm depends
on the argumentation system – for example, the accuracy of STABILITY-LABEL

on the argumentation system from Figure 4 is 100%.
It would be possible to extend our experiments with more argumentation sys-

tems, but that would require obtaining the ground truth; at this point we only have
the STABILITY-NAIVE algorithm to do that, which for large sets of queryables
takes more time than is feasible, as we have argued in Section 3.2. Furthermore,
accuracy percentages do not reveal which aspects of an argumentation theory are
problematic for stability estimation by STABILITY-LABEL. Therefore, we ex-
tend our empirical analysis with theoretical evidence for the soundness and condi-
tional completeness of our proposed algorithm. In the next sections, we show that
STABILITY-LABEL is sound for every possible argumentation system and identify
conditions under which the algorithm is complete. For argumentation systems
satisfying these conditions, like that of Figure 4, STABILITY-LABEL is sound and
complete, hence 100% accurate.

4.2.2. Soundness
In this section, we show that STABILITY-LABEL is sound: given an argumen-

tation theory AT and a set of queryables Q, if the algorithm labels l as stable in AT
w.r.t. Q, then l is stable in AT w.r.t. Q. Soundness is a valuable property in gen-
eral, but specifically in our application in inquiry dialogue, because it ensures that

32

the inquiry dialogue is only terminated if no additional information can change
the conclusion. As a first step, we show that the preprocessing algorithm is sound
in the sense that each literal that is labelled ⟨1, 0, 0, 0⟩ is stable-unsatisfiable in AT
w.r.t. Q.

Lemma 2 (Soundness preprocessing step). Let AT = (AS,K) be an argumenta-
tion theory where AS = (L,R,) and let Q be a set of queryables. Furthermore
let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, , Q and
K. For each l ∈ L: if Lp[l] = ⟨1, 0, 0, 0⟩, then l is stable-unsatisfiable in AT w.r.t.
Q.

Proof sketch. This can be shown by contraposition: if l is not stable-unsatisfiable
in AT w.r.t. Q, then there is some AT′ ∈ FQ(AT) such that there is an argument A
for l in Arg(AT′). If A is observation-based, then Lp[l] = ⟨1, 1, 1, 1⟩ is assigned in
Algorithm 1 line 3; if A is rule-based, then there is some rule r for l such that all
a ∈ ants(r) are labelled Lp[a] = ⟨1, 1, 1, 1⟩, hence the label Lp[r] = ⟨1, 1, 1, 1⟩
is assigned by line 13. In both cases, Lp[l] ̸= ⟨1, 0, 0, 0⟩.

The full proof can be consulted in Appendix B.6. Given that the preprocessing
step is sound, we now need to show that the remainder of the STABILITY-LABEL

algorithm is sound as well. Below we give a proof sketch; for the full proof, we
refer to Appendix B.7.

Proposition 2 (Soundness stability labelling). Let AT = (AS,K) be an argumen-
tation theory where AS = (L,R,), let Q be the set of queryable literals and
let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, ,
Q and K. If L labels a literal l ∈ L stable-unsatisfiable in AT w.r.t. Q, then l
is stable-unsatisfiable in AT w.r.t. Q; if L labels a literal l ∈ L stable-defended
in AT w.r.t. Q, then l is stable-defended in AT w.r.t. Q; if L labels a literal l ∈ L
stable-out in AT w.r.t. Q, then l is stable-out in AT w.r.t. Q; and if L labels a literal
l ∈ L stable-blocked in AT w.r.t. Q, then l is stable-blocked in AT w.r.t. Q.

Proof sketch. The following items will be used in the soundness proof sketch and
can be shown by induction (cf. Lemmas 12, 8, 11 and 17 in the appendix):

1. For each r ∈ R labelled ¬L[r].d and ¬L[r].b: for each AT′ ∈ FQ(AT), each
argument based on r is attacked by some argument in G(AT′);

2. For each l ∈ L labelled ¬L[l].u: there is an argument for l in Arg(AT′) for
each AT′ ∈ FQ(AT);

33

3. For each r ∈ R labelled ¬L[r].u and ¬L[r].o: if cons(r) /∈ Q then for
each AT′ ∈ FQ(AT) there is an argument based on r in Arg(AT′) that is not
attacked by any argument in G(AT′);

4. For each l ∈ L labelled ¬L[l].d: there is no argument for l in G(AT′) for
any AT′ ∈ FQ(AT).

There are four cases in which a literal l ∈ L is labelled stable by L (see
Lemmas 14, 15, 16 and 18 in the appendix).

• If L[l] = ⟨1,0,0,0⟩ then it was already labelled as such by PREPROCESS

(Lp[l] = ⟨1, 0, 0, 0⟩), because each rule r for l must have been labelled
L[r] = ⟨1, 0, 0, 0⟩ and either l /∈ Q or there is an l′ ∈ l such that l′ ∈ K. By
Lemma 2 l is stable-unsatisfiable in AT w.r.t. Q.

• Suppose L[l] = ⟨0,1,0,0⟩; if l’s label was assigned in the (k + 1)’th
iteration then there is a rule r for l that is labelled L[r] = ⟨0, 1, 0, 0⟩ and
for each r′ for l′ where l′ ∈ l, r′ is labelled ¬L[r′].d and ¬L[r′].b. Each
a ∈ ants(r) is labelled ⟨0, 1, 0, 0⟩ in or before the k’th iteration; hence by
induction each a ∈ ants(r) is stable-defended in AT w.r.t. Q. Furthermore,
by Item 1 above: for each AT′ ∈ FQ(AT′), each rule-based argument for
each l′ ∈ l is attacked by an argument in G(AT′). Consequently, there is
an argument for l, based on r, in G(AT′) of each AT′ ∈ FQ(AT). So l is
stable-defended in AT w.r.t. Q.

• Suppose L[l] = ⟨0,0,1,0⟩. We distinguish two cases. If l ∈ Q then some
l′ ∈ l is in K. Alternatively, l /∈ Q; then all rules r for l are labelled ¬L[r].d
and ¬L[r].b. By Item 1 above all arguments based on rules for l must be
attacked by an argument in G(AT′) for each AT′ ∈ FQ(AT). Furthermore, by
Item 2 above there is an argument for l in each AT′ ∈ FQ(AT). To conclude,
l is stable-out in AT w.r.t. Q.

• If L[l] = ⟨0,0,0,1⟩ then l /∈ Q and there is some rule r for l that is
labelled ¬L[r].u and ¬L[r].o. By Item 3 above, there is an argument based
on r in each AT′ ∈ FQ(AT) that is not attacked by any argument in G(AT′).
Furthermore, by Item 4 above there is no argument for l in G(AT′) for any
AT′ ∈ FQ(AT). As a result, l is stable-blocked in AT w.r.t. Q.

34

4.2.3. Conditional completeness
Next, we consider the completeness of our algorithm. As we illustrate in Ex-

ample 9, STABILITY-LABEL is not complete for all argumentation theories.

Example 9 (Example 4 continued). We return to our running example on fraud.
Consider the argumentation theory AT = (AS,K) where AS = (L,R,) where
L, R and Q correspond to the language, rules and queryables in Figure 1, but
K = {¬sm, rm}. STABILITY-LABEL does not label f stable: it expects a future
argument for f based on cd,¬rd, d ⇒ f , where the argument for cd is based on
sp,¬b ⇒ cd and the argument for ¬rd is based on ¬rp, b ⇒ rd. However, this
argument would require both b and ¬b to be in the knowledge base, which violates
the consistency criterion. In fact, for each AT′ in FQ(AT) there is no argument for
f in Arg(AT′), so f should be labelled ⟨1, 0, 0, 0⟩.

Example 9 shows that there are argumentation theories where the STABILITY-
LABEL algorithm wrongfully takes the possibility into account that there exists an
argument for a literal in a future argumentation theory. Specifically, this issue is
caused by an inconsistent potential argument, which we define next.

Definition 13 (Potential argument). Let AT = (AS,K) be an argumentation theory
where AS = (L,R,). A potential argument Ap on the basis of an argumenta-
tion theory AT given a set of queryables Q is a structure obtainable by applying
one or more of the following steps finitely many times:

• c is an observation-based potential argument if c ∈ Q and for each c′ ∈ c:
c′ /∈ K.
prem(Ap) = {c}; conc(Ap) = c; sub(Ap) = {c}.

• A1, . . . , Am ⇒ c is a rule-based potential argument if there is a rule
c1, . . . , cm ⇒ c in R and for each i ∈ [1 . . m]: Ai is a potential argument
on the basis of AT given Q and conc(Ai) = ci.
prem(Ap) = prem(A1) ∪ . . . ∪ prem(Am); conc(Ap) = c; sub(Ap) =
sub(A1) ∪ . . . ∪ sub(Am) ∪ {Ap}; top-rule(Ap) = r.

We denote the set of potential arguments on the basis of AT given Q as PQ(AT)
and refer to a potential argument with conclusion c as “a potential argument for
c”. A potential argument with with top rule r is “a potential argument based on r”.
Given some Ap ∈ PQ(AT), Ap is inconsistent iff there exist p1, p2 ∈ prem(Ap)
such that p1 ∈ p2. Given some set of potential arguments S ⊆ PQ(AT), S is
inconsistent iff there is some a ∈ L such that there is some a′ ∈ a and {a, a′} ∈
{prem(Ap) | Ap ∈ S}.

35

Just like arguments, potential arguments can be in conflict. Next, we define
p-attacks, which are rebuttal attacks between potential arguments.

Definition 14 (P-attack). Let AT = (AS,K) be an argumentation theory where
AS = (L,R,). For two potential arguments Ap, Bp ∈ PQ(AT) we say that Ap

p-attacks Bp iff Ap’s conclusion is c and:

• attack on conclusion: there is some c′ ∈ c such that c′ is the conclusion of
Bp and c′ /∈ K.

• attack on subargument: there is some c′ ∈ c such that c′ is the conclusion
of a subargument B′ of Bp such that B′ ̸= Bp and c′ /∈ K.

We write Ap p-attacks Bp on B′ if Ap attacks Bp, B′ ∈ sub(Bp) and conc(Ap) ∈
conc(B′).

Note that, for a given argumentation theory AT, each argument on the basis of
AT or some future argumentation theory is a potential argument in PQ(AT) since
K ⊆ Q and for each (AS,K′) in FQ(AT) : K′ ⊆ Q. On the other hand, there may
be a potential argument Ap ∈ PQ(AT) such that there is no AT′ ∈ FQ(AT) with
Ap ∈ Arg(AT′), but then Ap must be inconsistent; we encountered this situation in
Example 9, where the only potential argument for f in PQ(AT) was inconsistent
and therefore not an argument in any future argumentation theory.

Being an approximation algorithm, STABILITY-LABEL heuristically reasons
with potential arguments rather than with arguments in future argumentation the-
ories. We explicate this in the next lemma, which lists the conditions under which
one or more booleans of the stability label are labelled negative. These six items
can be shown by induction. For the proofs, we refer to Appendix B.8.

Lemma 3 (Conditions for labelling). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,) and let L be the labelling after executing the
STABILITY-LABEL algorithm on L, R, , Q and K. Let Lp be the labelling
after executing PREPROCESS on L, R, , Q and K. Let l ∈ L be a literal. Then:

1. Lp[l] = ⟨1, 0, 0, 0⟩ iff there is no potential argument Ap for l in PQ(AT).

2. If there is an argument for l in Arg(AT), then ¬L[l].u.

3. If each potential argument for l in PQ(AT) is p-attacked by an observation-
based argument in Arg(AT), then ¬L[l].d and ¬L[l].b.

36

4. There is an argument A for l in Arg(AT) and there is no observation-based
potential argument in PQ(AT) that p-attacks A iff ¬L[l].u and ¬L[l].o.

5. If each potential argument Ap for l in PQ(AT) is p-attacked by an argu-
ment B in Arg(AT) and there is no observation-based potential argument in
PQ(AT) that p-attacks B, then ¬L[l].d.

6. If there is an argument A for l in Arg(AT) and each potential argument Bp

in PQ(AT) that p-attacks A is p-attacked by an observation-based argument
in Arg(AT), then L[l] = ⟨0, 1, 0, 0⟩.

Because of this heuristic of reasoning with potential arguments, STABILITY-
LABEL efficiently recognises many, though not all situations in which a literal is
stable. From Lemma 3 we can now derive in which situations literals are stable
in the argumentation theory, but not labelled as such. Before formally specifying
this in Proposition 3, we give some intuitions on the three complications of using
potential arguments instead of arguments in future argumentation theories:

1. Potential arguments are not required to be consistent, while inconsistent
potential arguments cannot be derived in any future argumentation theory –
recall Example 9.

2. Consistent potential arguments do exist as arguments in some future argu-
mentation theory, but in some situations STABILITY-LABEL needs to reason
with combinations of potential arguments, which may not be derivable from
the same future argumentation theory. We will see this in Example 10.

3. The existence of a potential argument in a future argumentation theory may
cause other potential arguments to become arguments in the theory as well.
This is illustrated in Example 11.

Example 10 (Incomplete because of observation-unattackable literal). In the ar-
gumentation theory AT = (AS,K) of Figure 11, there are two arguments for t
in Arg(AT), i.e. A : [q1 ⇒ q3] ⇒ t and B : [q2 ⇒ q6] ⇒ t. These arguments
are not attacked by any argument in Arg(AT), so t is defended in AT. There are
potential arguments for q4, which p-attacks A, and q5, which p-attacks B. As a
consequence, t is not labelled stable-defended by STABILITY-LABEL, as the al-
gorithm assumes that these potential arguments can become actual arguments in a
future argumentation theory. There is however no AT′ ∈ FQ(AT) in which both q4
and q5 are in Arg(AT′). Therefore, in each AT′ ∈ FQ(AT), some argument for t is
not attacked by any argument in Arg(AT′), so t is stable-defended in AT w.r.t. Q.

37

q1⟨0, 1, 0, 0⟩ q2 ⟨0, 1, 0, 0⟩

q3⟨0, 1, 1, 0⟩ q4

⟨1, 1, 0, 0⟩
q5

⟨1, 1, 0, 0⟩
q6 ⟨0, 1, 1, 0⟩

t⟨0, 1, 1, 0⟩

⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩

⟨0, 1, 1, 0⟩ ⟨0, 1, 1, 0⟩

Figure 11: t is stable-defended in AT, but it is not labelled as such because each argument
for t in Arg(AT) is p-attacked by an observation-based potential argument in PQ(AT).
However, there is no AT′ ∈ FQ(AT) in which all arguments for t are attacked by an
observation-based argument in Arg(AT′). (Proposition 3 Case 2a) Note that this inconsis-
tency can be between more than two arguments; for example consider the argumentation
theory obtained by adding to L and Q: q7, q8, q9, q10, adding q7 to K, contradictories:
q6 = {q5, q8}, q8 = {q6, q9}, q9 = {q8, q10}, q10 = {q8} and add the rules q7 ⇒ q10 and
q10 ⇒ t to R.

In the example above, t is stable-defended in AT w.r.t. Q but not labelled as
such because the attackers of arguments for t are not derivable from the same
future argumentation theory. Formally, t is observation-unattackable in AT w.r.t.
Q, as defined next.

Definition 15 (Observation-unattackable). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,) and let l ∈ L be a literal. l is unattackable in AT
w.r.t. Q iff there is no consistent set of potential arguments T p ⊆ PQ(AT) such
that each argument for l in Arg(AT) is p-attacked by some potential argument in
T p. l is observation-unattackable in AT w.r.t. Q iff there is no consistent set of
observation-based potential arguments T p ⊆ PQ(AT) such that each argument for
l in Arg(AT) is p-attacked by some potential argument in T p.

A final cause of STABILITY-LABEL’s incompleteness is related to the fact that
updating a knowledge base so as to add a potential argument to the set of argu-
ments may introduce additional arguments.

Example 11 (Incomplete because of forcing argument). Figure 12 visualises an
argumentation theory AT = (AS,K) where Q = {q1,¬q1, q2,¬q2, q3,¬q3} and
K = {q1, q3}. Both in the current argumentation theory and in the two future
argumentation theories (AS,K∪ {q2}) and (AS,K∪ {¬q2}), t is blocked because
there are rule-based arguments for both t and ¬t. However, STABILITY-LABEL

38

q1⟨0, 1, 0, 0⟩

q2⟨0, 1, 1, 0⟩ ¬q2 ⟨1, 1, 0, 0⟩

t⟨0, 0, 1, 1⟩

q3 ⟨0, 1, 0, 0⟩

¬t ⟨0, 1, 0, 1⟩

⟨0, 1, 0, 0⟩

⟨0, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩
⟨0, 1, 0, 0⟩

Figure 12: For each AT′ ∈ FQ(AT): t and ¬t are blocked in AT′, but not labelled as such.
t is labelled L[l].o because the argument [q1 ⇒ q2] ⇒ t is p-attacked by the observation-
based potential argument ¬q2 of which the introduction in AT forces a new argument for
t (Proposition 3 Case 2b). ¬t is labelled L[¬t].d because there is an argument q3 ⇒ ¬t
for ¬t that is attacked by the argument [q1 ⇒ q2] ⇒ t, which is in turn p-attacked by
the observation-based potential argument ¬q2, but the introduction of ¬q2 in AT forces
¬q2 ⇒ t, which attacks q3 ⇒ ¬t (Proposition 3 Case 5c).

does not label t as stable because it reckons with the possibility that [q1 ⇒ q2] ⇒ t,
the only argument for t in Arg(AT), is attacked by ¬q2 in a future argumentation
theory. The algorithm does not take into account the side effect of adding ¬q2 to
the knowledge base, that is: the inclusion of the argument ¬q2 ⇒ t, which attacks
and is attacked by the argument q3 ⇒ ¬t.

Next, we formally define this phenomenon as potential arguments forcing ar-
guments.

Definition 16 (Forcing arguments). Let AT = (AS,K) be an argumentation theory
where AS = (L,R,). Given two potential arguments Ap, Bp in PQ(AT), the
introduction of Ap in AT forces Bp iff Bp ∈ Arg((AS,K ∪ prem(Ap))). We
say that the introduction of Ap in AT forces a new argument for l iff there is
some Bp for l in PQ(AT) such that the introduction of Ap in AT forces Bp and
Bp /∈ Arg(AT).

At this point, we have addressed the three causes of STABILITY-LABEL’s in-
completeness: inconsistent potential arguments, observation-unattackable literals
and potential arguments forcing arguments. We use these notions to formally
specify the situations in which a literal is stable, but not labelled as such.5 The

5Note that these conditions for incompleteness cannot be checked in polynomial time. In fact,

39

full proof of Proposition 3, as well as additional examples illustrating the cases of
incompleteness, can be found in Appendix B.8.

Proposition 3 (Conditional completeness stability labelling). Let AT = (AS,K)
be an argumentation theory where AS = (L,R,) and let L be the labelling
after executing the STABILITY-LABEL algorithm on L, R, , Q and K. Given a
literal l ∈ L, if l is stable in AT but l is not labelled stable by L, then some of the
following five cases applies:

1. l is stable-unsatisfiable in AT and each potential argument for l in PQ(AT)
is inconsistent.

2. l is stable-defended or stable-blocked in AT and:

(a) l is observation-unattackable in AT w.r.t. Q;6 or

(b) some argument A for l in Arg(AT) is p-attacked by an observation-
based potential argument Bp such that the introduction of Bp in AT
forces a new argument for l.

3. l is stable-defended in AT and there is an argument A for l in Arg(AT) that
is p-attacked by a potential argument in PQ(AT) that is not p-attacked by
an argument in Arg(AT) and:

(a) each potential argument in PQ(AT) p-attacking A that is not p-attacked
by an argument in Arg(AT) is inconsistent; or

(b) there is a consistent potential argument Bp in PQ(AT) p-attacking A
that is not p-attacked by an argument in Arg(AT), but the introduction
of Bp in AT forces a new argument for l; or

(c) l is unattackable in AT w.r.t. Q.

4. l is stable-out in AT and each potential argument for l in PQ(AT) that is not
p-attacked by an observation-based argument in Arg(AT) has inconsistent
premises; or

under the assumption that P ̸= NP it is generally impossible to check any exact incompleteness
conditions for any stability approximation algorithm in polynomial time: if that would be possible,
then this could be used to create an exact polynomial algorithm for the stability problem.

6This condition is specifically required for argumentation systems that do not have classical
negation as a contrariness function.

40

5. l is stable-blocked in AT and there is a potential argument Ap for l in
PQ(AT) such that each argument in Arg(AT) p-attacking Ap is p-attacked
by an observation-based potential argument Cp in PQ(AT) and:

(a) Ap is inconsistent; or

(b) the introduction of Ap in AT forces an argument attacking Ap; or

(c) the introduction of Cp in AT forces an argument that p-attacks Ap.

Proof sketch. There are four cases in which a literal l ∈ L is stable, but not la-
belled as such by L.

• If l is stable-unsatisfiable in AT but L[l] ̸= ⟨1,0,0,0⟩ then by Lemma 3
Item 1, each potential argument for l in PQ(AT) is inconsistent (Case 1).

• If l is stable-defended in AT but L[l] ̸= ⟨0,1,0,0⟩ then:

– If L[l].u or L[l].o (although l is not unsatisfiable or out in any AT′ ∈
FQ(AT)) then either l is observation-unattackable in AT (Case 2a) or
there is an argument A ∈ Arg(AT) for l that is p-attacked by some
potential argument of which the introduction in AT forces a new argu-
ment for l (Case 2b).

– If ¬L[l].u and ¬L[l].o then there must be some rule-based argument
A for l in Arg(AT) that is not p-attacked by any observation-based
argument in PQ(AT) (Lemma 3 Item 4). Still, l is not labelled stable-
defended by L, so there must be at least one potential argument p-
attacking A. Then either each potential argument p-attacking A is
inconsistent (Case 3a); there is some consistent Bp p-attacking A,
but the introduction of this potential argument in AT forces some new
argument for l (Case 3b); or it is not possible to attack all arguments
for l in Arg(AT) at the same time (Case 3c).

• If l is stable-out in AT but L[l] ̸= ⟨0,0,1,0⟩ then there is an argument for
l in Arg(AT), so by Lemma 3 Item 2 ¬L[l].u which implies L[l].d or L[l].b.
Then by Lemma 3 Item 3, each potential argument for l in PQ(AT) that is not
p-attacked by an observation-based argument in Arg(AT) has inconsistent
premises (Case 4).

• If l is stable-blocked in AT but L[l] ̸= ⟨0,0,0,1⟩ then:

41

– If L[l].u or L[l].o (although l is not unsatisfiable or out in any AT′ ∈
FQ(AT)) then either l is observation-unattackable in AT (Case 2a) or
there is an argument A ∈ Arg(AT) for l that is p-attacked by some
potential argument of which the introduction in AT forces a new argu-
ment for l (Case 2b).

– If ¬L[l].u and ¬L[l].o then L[l].d, so by Lemma 3 Item 5 there is a
potential argument Ap for l such that each argument in Arg(AT) p-
attacking Ap is p-attacked by some observation-based potential argu-
ment Cp in PQ(AT). Then either Ap is inconsistent (Case 5a), or Ap

is consistent, so there is a future argumentation theory AT′ from which
Ap can be derived. However, given that l is blocked in AT′, either
the introduction of Ap or Cp in AT forces an argument that attacks Ap

(Case 5b/5c).

4.2.4. Time complexity
In the next two sections, we discuss the computation time of our proposed

algorithm. Here we discuss the worst-case time complexity of STABILITY-LABEL

by a formal complexity analysis; in Section 4.2.5 (and in Section 5 on case studies)
we will complement this analysis with a series of experiments.

The STABILITY-LABEL algorithm consists of a preprocessing part (Algorithm
1) and a final labelling part (Algorithm 4 line 2–18). In the next two lemmas, we
analyse the individual parts and give proof sketches. Full proofs are available in
Appendix B.5.

Lemma 4 (Time complexity PREPROCESS). The time complexity of PREPRO-
CESS is O(|L|2 + |L| · |R|2).
Proof sketch. The time complexity of PREPROCESS is bounded polynomially by
the size of the language and rule set of the argumentation system. The complexity
is mainly caused by line 3 (which checks the at most |L| contradictories of each
of the |L| literals) and line 11 (which checks the label of each of the at most |L|
antecedents of each rule r ∈ R in each of the maximal |R| iterations of the while
loop).

Proposition 4 (Time complexity STABILITY-LABEL). The time complexity of
STABILITY-LABEL is O(|L|3 · |R|+ |L|2 · |R|2).
Proof sketch. The runtime of STABILITY-LABEL is particularly dominated by line
15, which relabels all contradictories of the conclusion of a rule that is relabelled.

42

A single execution of this line requires labelling a literal, which in the worst case
requires checking the presence of that literal and all of its (at most |L|) contradic-
tories in Q and K, as well as the labels of all (max |R|) rules for that literal or any
of its contradictories. Line 15 is executed at most |L| times for each iteration of
the while loop. The total number of iterations of the while loop equals the number
of times a rule is added to TODO-SET. A rule is only added to TODO-SET if it
was not yet visited (line 6) or if the label of one of its antecedents changed after
a relabelling (line 13 or line 17). Since the label of a literal can change at most
four times (i.e. at most four booleans can be turned to False), each rule r ∈ R is
relabelled at most 5 · |ants(r)| times. This means that line 15 is executed at most
5 · |L|2 · |R| times. Then the total time required for all iterations of line 15 is at
most 5 · c · (|L|3 · |R|+ |L|2 · |R|2), where c is a positive constant.

4.2.5. Computation time
The worst-case complexity analysis shows that STABILITY-LABEL is polyno-

mial, having a worst-case time complexity of O(|L|3 · |R|+ |L|2 · |R|2) (Proposi-
tion 4), which guarantees that the impact of the size of the argumentation system
on the computation time is limited. Considering that STABILITY-LABEL is sound
and in many cases complete (Sections 4.2.2 and 4.2.3), this polynomial algorithm
is preferable to an exact exponential algorithm for our application in argument-
based inquiry. Still, the fact that an algorithm is polynomial states that its runtime
on inputs of size n is at most c · nk for some positive constants k, c, but does
not necessarily imply that the algorithm runs in, say, a few milliseconds. If the
constants k and/or c are very large, the runtime may still exceed the limit of what
is acceptable. A natural question that might arise at this point is: is STABILITY-
LABEL fast enough for practical applications?

Experiment 1: Running example. As a first experiment, we measure STABILITY-
LABEL’s computation time on all 6551 possible argumentation theories for our
running example on online trade fraud. Figure 13 shows the results as boxplots,
grouped by the number of unknown queryables. In contrast to STABILITY-NAIVE,
the size of the unknown queryable set does not play a significant role in the run-
time of STABILITY-LABEL. The stability labels are typically estimated in less than
a millisecond. This is well within the limits of acceptable runtime for (real-time)
applications at the police.

Experiment 1 shows that our algorithm runs fast on the small running exam-
ple. However, from its theoretical upper bound it may seem that STABILITY-
LABEL’s runtime will highly (and potentially problematically) increase when the

43

0 1 2 3 4 5 6 7 8

Number of unknown queryables (|Qpos | − |K|)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Figure 13: Computation time of STABILITY-LABEL on the argumentation theories for the
running example on online trade fraud (see Figure 1), grouped by the number of unknown
queryables.

algorithm is executed on algorithms with large languages and/or rule sets. In
order to rebut this presumption, we conducted two experiments in which we mea-
sure STABILITY-LABEL’s runtime of randomly generated argumentation theories
parametrised by language and rule size.

Experiment 2: Randomly generated argumentation systems. As a second exper-
iment, we timed STABILITY-LABEL on randomly generated argumentation theo-
ries with varying language and rule set sizes. A detailed description of our argu-
mentation theory generation procedure can be found in Appendix C. The results
are shown in Figure 14. In general, for a fixed number of literals the compu-
tation time increases as the number of rules increases. This is in line with our
expectations: more rules result in more iterations of the while loop in Algorithm 4
line 7–17. Note that the computation time decreases as the number of rules is kept
constant and the number of literals increases. Our explanation for this is as fol-
lows: an argumentation system that has relatively many literals and few rules must
have many literals such that there is no rule for that literal or one of its contradicto-
ries. For each of these literals l, only three labels are possible: L[l] = ⟨1, 0, 0, 0⟩ iff
l /∈ Q or l ∈ K; L[l] = ⟨1, 1, 0, 0⟩ iff l ∈ Q and l /∈ K and for each l′ ∈ l: l′ /∈ K;
and ⟨0, 1, 0, 0⟩ iff l ∈ K. Those labels are assigned at the latest by Algorithm 4
line 6. On the other hand, in argumentation systems with few literals and many

44

rules, there will be some literals that are considered for relabelling many times
because there are many rules for (a contradictory of) that literal. This is reflected
in the relatively long computation times of argumentation systems with 10 literals
and 250 rules. Still, even for these argumentation systems STABILITY-LABEL is
reasonably fast with a computation time in the order of tenths of a second.

The data sets generated in the previous experiment provide some insight in the
influence of the language and rule set size on the computation time, but it should
be noted that the structure of these randomly generated argumentation systems
differs from the argumentation systems used in practice, for example in our case
studies (Section 5). The argumentation systems used in our case studies have a
layered structure with the following four properties: first, all literals that are not
queryable are either the conclusion of some rule or have contradictory for which
a rule exists; other literals would be unsatisfiable in any argumentation theory and
therefore not interesting for an inquiry dialogue. Second, for each rule r ∈ R,
the set of its antecedents and consequent is consistent. This means that rules such
as a, b, c ⇒ ¬a or ¬a, a ⇒ b would not exist. Third, for each rule r ∈ R, each
literal occurs at most once in the antecedents or consequent, which excludes rules
such as a, b, b, c ⇒ d or a, b ⇒ a. Fourth, in applications where the distinction
between the unsatisfiable and out statuses is not important, R does not contain
rules for queryable literals.

Experiment 3: Layered argumentation systems. In order to assess STABILITY-
LABEL’s computation time for more realistic argumentation theories, we con-
ducted another experiment on a data set generated by an alternative procedure.
The resulting argumentation theories have a layered structure, as concisely de-
scribed above; for more details, we refer to Appendix C. The resulting compu-
tation times are shown in Figure 15. Note that not all combinations of literal and
rule set sizes are possible. In general, the results are similar to the results of Ex-
periment 2, though slightly less computation time is needed for argumentation
theories with many rules and few literals.

From the experiments above we derive that STABILITY-LABEL is sufficiently
fast for argumentation systems that have at most a few hundred literals and/or
rules. As we will see in Section 5, argumentation systems for our applications at
the Netherlands Police are an order of magnitude smaller. To conclude, STABILITY-
LABEL is clearly fast enough for practical applications.

45

10 20 50 100 150 200 250

Number of rules

0

25

50

75

100

125

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Number of literals = 10

10 20 50 100 150 200 250

Number of rules

Number of literals = 20

10 20 50 100 150 200 250

Number of rules

Number of literals = 50

10 20 50 100 150 200 250

Number of rules

Number of literals = 100

10 20 50 100 150 200 250

Number of rules

0

25

50

75

100

125

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Number of literals = 150

10 20 50 100 150 200 250

Number of rules

Number of literals = 200

10 20 50 100 150 200 250

Number of rules

Number of literals = 250

Figure 14: Computation time of randomly generated data set parametrised by language
and rule sizes.

10 20 50 100 150 200 250

Number of rules

0

25

50

75

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Number of literals = 10

20 50 100 150 200 250

Number of rules

Number of literals = 20

50 100 150 200 250

Number of rules

Number of literals = 50

100 150 200 250

Number of rules

Number of literals = 100

100 150 200 250

Number of rules

0

25

50

75

C
om

p
u
ta
ti
on

ti
m
e
in

m
s

Number of literals = 150

150 200 250

Number of rules

Number of literals = 200

150 200 250

Number of rules

Number of literals = 250

Figure 15: Computation time of randomly generated layered data set parametrised by lan-
guage and rule sizes. Note that some combinations of literals and rules were not possible,
e.g. it is not possible to make an argumentation system with 200 literals and 100 rules,
given that we initialised the generator in such a way that it makes argumentation systems
of three layers.

46

5. Case studies at the Netherlands Police

One of the challenges faced by the Netherlands Police is the vast amount of
incoming information that needs to be acted upon. Inquiry systems can offer a
solution, provided that they are designed and used in accordance with democratic
principles and fundamental rights (European Commission, 2021). Specifically,
inquiry systems are able to process data, trying to reach some (domain-specific)
legal conclusion and investigate if any additional information is required to guar-
antee that this conclusion will not change any more (or: is stable). By minimizing
the information that is collected in order to make a decision, they respect the
notion of proportionality. Another important requirement is transparency, which
is satisfied by using interpretable symbolic AI methods. In this section, we
share our experience with the application of argumentation-based inquiry agents
at the Netherlands Police in three use cases. This way, we not only show how
our algorithm for estimating stability can be applied in practice, but also provide
experiences with applying argumentation-based solutions in realistic settings.

All three use cases, summarised in Table 2, concern inquiry agents in a context
where unstructured data is processed in order to reach some legal conclusion, in
the domains of fraud intake, handling of international messages and classification
of fraudulent web shops. The projects corresponding to the presented use cases
are in different phases. The system for fraud intake has been in production since
September 2019 (see Figure 16a) while the other projects are still in a proof of
concept phase.

5.1. Case study: fraud intake
The first implementation of our architecture in an agent at the Netherlands

Police concerns a system that assists in the intake of online trade fraud. This
involves cases such as fake web shops and malicious second-hand traders on trad-
ing platforms such as eBay. Every year, the police receives tens of thousands of
complaints on online trade fraud, which are typically sent by citizens via an on-
line form, and this number is increasing. Traditional online forms for intake have
proven to be insufficient. Citizens tend to have a hard time identifying which facts
are relevant or not from a legal standpoint. It is also not always clear for a citizen
whether a case is a criminal or civil case. The inquiry agent therefore helps the
citizen to provide all relevant legal facts and then proceeds to advise the citizen
on the best course of action given these facts and the legal context.

Example 12 (Trade fraud complaint example). This is a fictitious example of the
free text in a complaint.

47

Application Description Topic literals Section
Fraud Intake An agent that handles the

intake of citizens’ com-
plaints on online trade
fraud.

The complainant was
allegedly a victim of
fraud (based on Arti-
cle 326). Additional
topic literals are pos-
sible actions, such as
passing on the com-
plaint to a specialised
team or referring the
citizen to the Legal
Services Counter.

5.1

International
Messages

An agent that supports
international commu-
nication between law-
enforcement organiza-
tions.

Possible actions (e.g.
respond to the mes-
sage or ignore it).

5.2

Web Shop Classi-
fication

An agent that assists in the
classification of fraudulent
web shops.

Factors contributing
to an advice on the
trustworthiness of the
web shop

5.3

Table 2: Overview of the case studies

I was looking for a playstation and contacted fred fraudster via eBay.
he said that he lives in aberdeen which is far away so we agreed that
he would send it to me. But after two weeks waiting I still have not
recieved anything.

Except for the fact that this text is written in English and not in Dutch, this is
a typical example of the free text submitted in a complaint on online trade fraud.
In this complaint, some crucial information is missing: the complainant in this
example does not say if he/she paid for the product.

5.1.1. Architecture
The agent for fraud intake is implemented according to the architecture illus-

trated in Figure 17. The architecture implements a sense-reason-act cycle. The
steps consist of sensing the truth value of observable statements, reasoning about
whether the inquiry is finished and if so, about the relevant actions and acting upon

48

(a) The agent on the web site of the Netherlands
Police. (b) Visualisation of the stability labels.

Figure 16: Screenshots of the actual and demo versions of the agent for fraud intake. The
English translation is ours; the agent on the police web site is only in Dutch.

the relevant actions in order to gather relevant observations. The information ex-
traction component uses natural language processing techniques to automatically
extract initial observations, i.e. low-level statements, from the available (free text)
input. These observations are then combined with the (case study specific) argu-
mentation system to build arguments for and against the topic literal. The stability
component uses STABILITY-LABEL to decide if any additional observations that
the user could possibly add in the future can change the justification status of
the topic literal. If there are still relevant potential observations, then the policy
module returns the best query given current observations. Otherwise, the dialogue
terminates and the explanation module generates an explanation of the outcome.

5.1.2. Information extraction
For the information extraction component, observations are extracted from

the initial free-text user input. Observations in this domain are for example “the
complainant paid” or “the product was not delivered”. After experimenting with
various methods (Schraagen et al., 2017, 2019; Schraagen and Bex, 2019), in-
cluding machine learning approaches and hand-made classifiers, we decided to
use document-level regular expressions (regexes) for information extraction. We
furthermore enable the citizen to correct any classification mistakes in a separate
screen, which is shown immediately after the text input step. From this point, the
observations are used as axiom literals in the initial knowledge base.

49

Information
Extraction

Stability

Initial message

Obs 1

Obs 2

Obs 3

Obs 4

Obs 5

Obs 6

Observations

Policy

Next Question

Substantiated conclusion

Outcome
Literal C should be

accepted because…

Not stable

Add
observation

Stable

Argumentation system

Obs 1 and Obs 2 → Literal A

Not Obs 3 → Literal B

Obs 5 → Not Literal B

Literal A and Literal B → Literal C

Obs 6 → Not Literal C

Explanation

User Response

“Obs 5?”“No.”

Figure 17: Architecture of the hybrid inquiry agent. The agents for fraud intake (Sec-
tion 5.1) and handling international messages (Section 5.2) are instantiations of this ar-
chitecture.

5.1.3. Argumentation system
The argumentation system was developed in collaboration with domain ex-

perts at the national centre for counteracting online trade fraud and the Nether-
lands Public Prosecution Service. Table 3 reports on some specifications. The
argumentation system has a layered structure, in the sense that there is a high-
level rule, based on Article 326 of the Dutch Criminal Code, specifying whether
there is evidence of fraud. We use seven different topic literals, which correspond
to the follow-up actions. These actions include e.g. accepting the complaint, con-
sulting a human expert, rejecting the complaint but accepting it as a civil case or
completely rejecting it and are dependent on the rule on fraud. Other rules relate
general legal terms to more specific literals, where the most specific literals are
concrete enough to ask to the citizen using the system. These queryable literals
make up half of the language. There are no rules for queryable literals.

For contradiction, we use a function in which not only each literal and its nega-
tion are contradictories, but we add an additional contradictory relation between
some literals. For example, the observation ¬package ordered and the observa-
tion delivery proof fake are contradictory, because alleged victims of online trade
fraud that did not order a package will not receive a fake delivery proof. This way,
we restrict the number of questions in some dialogues. Note that the number of fu-
ture argumentation theories from (AS,Q) is just 5.443.200; if we would not have
these additional contradictories, we would have 3|Qpos| = 315 = 14.348.907 future
argumentation theories (where Qpos is the set of all non-negated queryables).

Whereas the process of identifying rules for fraud was relatively straightfor-

50

ward, it was more challenging to construct rules on which counterarguments could
be based. For domain experts without a background in logic or knowledge repre-
sentation, it is not trivial to fully understand the consequences of an attack between
arguments. In particular, we experienced difficulties in identifying on which level
a counterargument should be placed. To give an example: we recently extended
the rule set so as to accept not only cases of fraud, but also fraud attempts. In case
of a fraud attempt in the context of online trade fraud, the complainant realised in
time that the counterparty would not deliver goods as promised and therefore did
not pay. For fraud, the police maintains a directive that the complainant should
have waited at least five days after the promised date of delivery. The complainant
not having waited long enough is a reason for the police not to accept a complaint
on trade fraud. However, the question if it would be a reason not to accept a com-
plaint on fraud attempt turned out to be hard to answer. We tried to simplify this
process in two ways.

First, we developed a user interface that visualises the argumentation system
and directly shows the effect of adding or removing a literal to the knowledge base
on the literal labelling, see Figure 16b.7 This gave not only domain experts but
also the software developers implementing the intake agent, insight in the working
of the labelling algorithm. Second, we iteratively developed the rules by providing
the domain experts various example observation sets and asking them if this would
be a case of (attempted) fraud or if more information would be required.

Given the size of the argumentation system and our experiments in Section 4.2.5,
we would expect that running stability takes no more than a few milliseconds. We
verified this with the following experiment. First, we generated a data set in which

7See https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approximating-stability
-applied-argument-based-inquiry for a demo of this interface.

Number of literals 30 (and negations)
Number of queryable literals 15 (and negations)
Number of topic literals 7
Number of rules 43
Number of future argumentation theories from (AS, ∅) 5.443.200
Number of potential arguments 126
Number of arguments in at least one future argumentation theory 124

Table 3: Specification of the argumentation system used for fraud inquiry at the police

51

https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approximating-stability-applied-argument-based-inquiry
https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approximating-stability-applied-argument-based-inquiry

we sampled 10.000 knowledge bases, i.e. consistent subsets of Q, for each size
between 0 and 15. This resulted in 160.000 argumentation theories based on the
fraud intake argumentation system. For each of these argumentation theories, we
measured the time required for running STABILITY-LABEL ten times. The aver-
age computation time is 1.7 ms and is not dependent on the number of unknown
literals. This shows that our algorithm can be used in real time for estimating
stability in applied argumentation-based inquiry.

5.1.4. Policy
In argumentation theories where not every topic literal is stable, it is necessary

to query the citizen using the system for more information. This is handled by
the policy module. In the fraud intake agent, the policy module consists of two
parts: a relevance listing step that identifies which questions are still relevant and
a strategy for choosing the next question of this relevant set.

The relevance listing step is argumentation-based and uses an approxima-
tion algorithm that is similar to STABILITY-LABEL in order to find out which
queryable literals are still relevant, in the sense that observing them in the future
would lead to a stable situation. The details of this algorithm are outside the scope
of this paper.8 Once we have a set of relevant literals for each of the topics, the
inquiry agent should select the next question from these relevant literals. In the
current system, the agent asks for the literal in the relevant set with the highest
priority.

5.1.5. Explaining stability
The main target audience of explanations in this use case are the citizens sub-

mitting a complaint. An explanation is particularly interesting in those situations
where the intake agent advises not to submit the complaint, because the citizen
does not seem to be a victim of fraud. An initial experimental study on the effect
of various types of explanation on the trust of citizens shows that a substantive ex-
planation that gives reasons for its advice (e.g. “The advice is not to submit a com-
plaint. This is probably not a case of fraud since you tried to buy a product from a
trusted web shop”) can help in improving citizens’ trust in the fraud intake agent
(Nieuwenhuizen, 2020). Being argumentation-based, our inquiry agent architec-
ture has high potential for explainability (see e.g. Borg and Bex (2021a,c); Cyras
et al. (2021); Vassiliades et al. (2021)). For our use case, we selected the smallest

8See Odekerken et al. (2022) for a discussion on the complexity of this problem.

52

sets of queryable literals for which a topic literal is labelled stable-defended and
mapped them to a natural-language explanation, similar to the one provided at the
beginning of this paragraph.

5.1.6. Discussion
The inquiry intake agent has been running on the police website since Septem-

ber 2019 and has been used over 240.000 times in three years. We found that such
argumentation-based system is useful for inquiry, but that an approximation-based
algorithm is required to guarantee short computation times. We also did a gen-
eral evaluation of the system. For those complaints that are actually submitted,
we compare the system’s advice to the human domain expert’s assessment. In
around 85% of the cases, the advice of the system agrees with the human expert’s
advice. In addition, we ask citizens about their experience in using the system in
a poll that pops up immediately after usage of the system. In this poll, citizens
give a score of 4.3 out of five, which suggests that they are quite satisfied with the
system.

5.2. Case study: international messages
The next use case concerns the support of international communication be-

tween law-enforcement organizations. An earlier description of this use case can
be found in Testerink et al. (2019a). The communication concerns mutual requests
for legal assistance and informative messages regarding basically anything related
to crime. The police has to judge per message what the right course of action
is. Some messages can simply be ignored, whilst others may require a thorough
follow-up. It is not uncommon that an employee has to consult multiple admin-
istrative systems in order to properly process a message. This digital inquiry is
exactly what the algorithm discussed in this paper supports.

Example 13 (INTERPOL message). Consider the following fictional but realistic
example of an unstructured message:

Subject: Piet Jan PUK, dob 12.03.1945, r/o Netherlands, 123 Stad,
Eenlaan 1 - loss of identification document

Dear colleagues,

Please be informed that the a/m subject reported a loss of his identifi-
cation document - driving licence to our Local Police Station in East
Arkham. Please supply us with details about the driving licence (date

53

and place of issue, validity) because these data are necessary for in-
serting the document into the database of stolen and lost documents.

Thank you for your cooperation. Best regards, End. NCB Canberra

To process this message, one first has to observe that this message is a request
which warrants a response and that the existence of a document is to be deter-
mined. Next, it has to be checked whether sufficient information is available for
processing the request. If not, then a follow-up question ought to be formulated.
Otherwise, it has to be observed whether or not the document indeed occurs in
the administration. Depending on whether this is the case, the response would be
either the requested information or a notification that the document is unknown.
Although this example is fairly straightforward, requests can be complex cases
with various legal subtleties.

The agent that we designed for handling these international messages is im-
plemented according to the same architecture as the fraud intake agent (see Fig-
ure 17). Whereas the implementation of most components of this architecture
depends on the specific use case, the stability component is the same for both use
cases and uses the STABILITY-LABEL algorithm described in Section 4.

First, we discuss some properties of the argumentation system. The inquiry
agent of this use case is supposed to give an advice upon an action, which may
be to ignore, forward or respond to a message, and to assign it to a low, medium
or high importance. Hence we take these upper level actions as the topic literals
of the inquiry dialogue. The rules and queryable literals are designed in such a
way that they reflect the reasoning behind any current choice of users to execute
a certain action or not. The rule set has a fairly modular structure. Roughly
speaking, there is a set of rules for different types of actions that the agent may
perform. The antecedents of these rules are either queryables or the consequents
of other rules. The queryables represent possible outcomes of particular data base
queries.

Example 14 (Excerpt from rule set). Consider for instance this simplified rule set:

1. request, ¬only on hit ⇒ respond

2. request, only on hit ⇒ ignore

3. request, only on hit, query hit ⇒¬ignore

4. request, only on hit, query hit ⇒ respond

54

5. query hit person data base ⇒ query hit

6. person query required, person found ⇒ query hit person data base

This set represents the reasoning that requests are ignored if only positive
hits are requested (rule 2), unless there is a hit on the requested query; in that
case, the message should be responded to (rules 3 and 4). In case not only pos-
itive hits are requested, a response is required in general (rule 1). Rules 3 and
4 have a common antecedent query hit, which is not queryable, but arguments
from this literal can be instantiated by literals specific for a given data base, for
instance a data base with personal records (see rule 5). Finally, for rules related
to database queries, such as rule 6, usually one of the queryables is the actual
query result (person found), which is irrelevant if the message does not call for
this query. Suppose for example that ¬person query required is observed; then
person query required and query hit person data base are labelled ⟨1, 0, 0, 0⟩ by
STABILITY-LABEL. This indicates that the observation person found is not rel-
evant for deciding if a message should be ignored or responded to and the agent
will not attempt to query the database. If, alternatively, person query required is
observed, then the person found literal remains relevant. Consequently, the agent
may still choose to unveil its valuation by executing the actual database query.

For selecting the next question, the policy is optimised by minimising the
number of questions, using reinforcement learning (Schraagen et al., 2019).

At the end of the inquiry process, when all topic literals are labelled stable,
the inquiry agent is required to explain why it suggests a specific course of ac-
tion. For this use case, the explanation is generated automatically by recursively
determining the cause of labels for rules and literals.

5.3. Case study: web shop classification
Our third and final use case concerns a human-in-the loop classifier that dis-

tinguishes bona fide from mala fide web shops. A large part of the complaints
on online trade fraud received by the Netherlands Police concerns reports on web
shops that do not deliver goods. In order to decide if a web shop is bona fide
or mala fide, human analysts at the national centre for counteracting online trade
fraud used to manually check suspect web shops. However, this is a lot of work
given the large number of suspect web shops. Therefore, the police experiments
with using AI to speed up the process. Creating a classifier for mala fide web
shops is not trivial, since properties of these web shops change over time and
some of them cannot be assessed automatically and accurately; see Odekerken

55

and Bex (2020) for a more elaborate description of this use case. It is therefore
important that the analyst can influence the final decision taken by the classifier.
In particular, our algorithm STABILITY-LABEL plays a central role in validating
that the factors that are used as input for the classification procedure are correct.
These factors are typically based on observations obtained by scraping the web
site, extracting information using natural language processing techniques and in-
teraction with APIs. Note however that an observation obtained this way may not
be perfect. Incorrect observations will probably lead to incorrect factors, which
in some cases leads to an incorrect advice. We address this by introducing an
inference step, in which arguments for factor literals are constructed based on
the extracted observations and an argumentation system. In classification, only
those factors are considered for which there is an argument in the grounded ex-
tension. The rules of this argumentation system are devised in such a way that
the experts at the police can always correct the observations found by the feature
extractor; see Example 15. Those topics that are not labelled stable-defended by
STABILITY-LABEL are not used for classification without asking the analyst to
check and possibly correct the underlying observations.

Example 15 (Rules for factors). Figure 18 illustrates the rules related to the fac-
tors b trusted (stating that the web shop is on the trusted list of some trustmark
company) and m fake logo (stating that the web shop misuses a trustmark logo).
In this example, b trusted is unsatisfiable in the current argumentation theory, as
well as each argumentation theory that can be obtained in the future. The reason
for this is that its antecedent a registered is unsatisfiable, given that a contra-
dictory of this queryable literal is observed. The mala fide factor m fake logo
is defended in the current argumentation theory, since there is an argument for
this literal that is not attacked. However, in the future argumentation theory
AT′ = (AS,K ∪ {¬e logo}), this argument is attacked by an observation-based
argument for ¬e logo, which means that m fake logo is out in AT′.

6. Related work

The notion of stability is related to research in dynamic argumentation, as we
further describe in Section 6.1. As we have seen previously, stability is a natural
termination criterion for argument-based inquiry. In Section 6.2, we relate our
inquiry systems to other approaches in computational argumentation and conver-
sational AI.

56

a registered

registered

¬a registered

¬registered

f logo

e logo

logo

¬f logo

¬e logo

¬logo

b trusted m fake logo

Figure 18: Excerpt from the rule set. If a feature extractor found a trustmark logo at the
web site (f logo), but an API call returns that this site is not registered at the trustmark
company (¬a registered), there is an argument for the mala fide factor that the web shop
uses a fake trustmark logo (m fake logo). However, if the analyst would search for the
logo on the web shop, the image found by the feature extractor may not be a trustmark
logo (¬e logo). In that case, each argument for m fake logo would be attacked by the
observation-based argument for ¬e logo. Consequently, m fake logo would be out in this
future argumentation theory, hence would not be considered as a factor in the (best-case)
factor set.

57

6.1. Stability and dynamic argumentation
Dynamic argumentation (Doutre and Mailly, 2018) is a research direction

within computational argumentation that assumes that the argumentation frame-
work is not static, but can be altered by e.g. the addition or removal of arguments
and/or attacks, possibly resulting in a changed acceptability status of some argu-
ment(s). Research on dynamic argumentation includes work on the impact of a
change operation (Cayrol et al., 2010; Alfano et al., 2017, 2019, 2020, 2021), en-
forcement (Baumann and Brewka, 2010; Doutre and Mailly, 2018; Borg and Bex,
2021b), resolution (Modgil and Prakken, 2012) and the relation with belief revi-
sion (Falappa et al., 2009; Snaith and Reed, 2016). Since the task of estimating
stability is to decide if any further information (resulting in additional arguments)
can change the acceptability status of some claim, it can be placed in the field of
dynamic argumentation as well.

Most research on dynamic argumentation, e.g. Baumann and Brewka (2010);
Cayrol et al. (2010); Doutre and Mailly (2018); Alfano et al. (2017, 2019), only
considers the effect of changes in the abstract framework, such as adding an ar-
gument. In doing so, these approaches abstract away from dependencies between
arguments. This is problematic, especially when these approaches reckon with
argumentation frameworks for which no structured instantiation exists. For exam-
ple, adding a new argument A to the arguments of an argumentation framework
may introduce new attacks based on its structure in relation to the structure of
arguments that are already present. Furthermore, adding a new argument A to the
arguments of an argumentation framework also introduces all subarguments of A,
which may not have been present in the original framework, possibly in combina-
tion with other arguments of which A is a subargument. In addition, adding one
argument A may prevent the introduction of an additional argument B, for exam-
ple because their premises contain mutually inconsistent axioms. Finally, work
on abstract argumentation frameworks can only show the effects of adding argu-
ments and/or attacks to the acceptability of arguments, but not on the acceptability
of claims.

Some related work on dynamic argumentation introduces extensions to ab-
stract argumentation frameworks that capture some of these dependencies. For
instance, in argument-incomplete argumentation frameworks (Baumeister et al.,
2018), the introduction of an argument forces the introduction of all attacks such
that both arguments involved in the attack are present in the resulting argumenta-
tion theory. Recently, stability was defined for these argument-incomplete argu-
mentation frameworks (Mailly and Rossit, 2020). Still, it is impossible to repre-
sent the other aforementioned dependencies between arguments and claims in in-

58

complete argumentation frameworks. Consequently, even an algorithm that would
be perfectly accurate in detecting stability on an abstract, argument-centric level
cannot be used directly for sound and complete stability detection on a more struc-
tured, claim-centric level.

For this reason, we define the problem of stability on structured argumenta-
tion frameworks. This does not mean that each (approximation) algorithm for
estimating stability on a structured level captures all aforementioned dependen-
cies between arguments and claims. In fact, our algorithm STABILITY-LABEL

ignores some of these dependencies so as to guarantee polynomial runtime; re-
call the cases of incompleteness from Section 4.2.3. Still, we consider it to be
preferable to present a sound but incomplete algorithm for estimating stability on
a structured level, as we do in this paper, than to propose an exact algorithm for
detecting stability defined on abstract argumentation frameworks. The reason for
this is that the former approach is more transparent, revealing cases of incomplete-
ness rather than concealing them in abstraction. This allows for a fair comparison
between stability detection algorithms, such as STABILITY-LABEL, STABILITY-
NAIVE or any other algorithm to be designed in the future, in terms of soundness,
completeness and computational complexity.

At present, none of the existing work in dynamic argumentation specifically
studies stability on the structured level. In general, research on dynamics in struc-
tured argumentation frameworks is scarce. We briefly discuss some related re-
search. Modgil and Prakken (2012) study resolutions in structured argumentation:
they show how the acceptability of arguments changes due to a change of prefer-
ences in the underlying structured argumentation framework and prove that results
from resolutions on an abstract level cannot always be transferred to the structured
level. In Borg and Bex (2021b), enforcement is studied in a structured argumen-
tation setting. Enforcement is related to, yet different from stability. Some literal
can be enforced if it is possible to alter the knowledge base in such a way that it is
justified, whereas it is stable(-defended) if each possible addition to the knowledge
base results in an argumentation theory in which the literal is justified. Another
related study (Snaith and Reed, 2016) shows how the acceptability of a specific
set of arguments can be altered by a minimal number of changes on the premises
and/or rules in an argumentation framework, relating dynamic argumentation to
belief revision. However, they do not focus on a specific task, such as stability;
they do not consider computational complexity, nor do they provide an efficient
(approximation) algorithm. Two related papers that do take computational com-
plexity into account are Alfano et al. (2020, 2021). The authors propose efficient
algorithms to minimise re-computations after a change in an Attack-Support Ar-

59

gumentation Framework or in a DeLP program. However, whereas they study
acceptability status after a specific change, we study the status after any possible
change in the structured argumentation framework.

6.2. Inquiry dialogue in computational argumentation and conversational AI
Our approach can also be related to other approaches for inquiry dialogue.

In this section, we consider both argumentation-based inquiry and research on
conversational AI. Within the argumentation community, inquiry has been studied
mainly in the context of dialogue protocols and strategies, which formally define
the legal or best move(s) for an agent at each stage of the dialogue (Parsons et al.,
2002; Black and Hunter, 2009; Fan and Toni, 2012). Rather than focusing on
the procedural context in which the inquiry dialogue takes place, we specifically
concentrate on efficiency.

Task-oriented systems in the field of conversational AI can also be considered
as inquiry systems. This prototypical pipeline of this kind of system consists of
a natural language understanding component, a dialogue management component
and a natural language generation component (Chen et al., 2017). Our approach is
compatible with this pipeline, in which the stability and policy modules together
fulfill the role of the dialogue manager. A natural question that might arise here
is why we designed an argumentation-based solution for dialogue management,
rather than a hand-written dialogue flow, which is a more common approach for
this component of the pipeline. A dialogue flow is based on a finite state ma-
chine (Jurafsky and Martin, 2009) that explicitly specifies which question should
be asked in which situation. Although this method is conceptually simple at first
sight, it has some serious drawbacks compared to our approach. First, in the legal
domain it is common to have many exceptions to general rules. Hence answers
to questions typically influence whether inquiring upon other questions is still rel-
evant. For real-world applications, this result in a high number of branches in
dialogue flows. It is quite difficult to manually design such a dialogue flow, since
a domain expert needs to anticipate for any possible user inputs, see e.g. Paek and
Pieraccini (2008). In contrast, our approach does not require manually defining a
dialogue flow; legal rules can be applied in the rule set of the argumentation sys-
tem. Furthermore, an agent based on dialogue flow cannot automatically generate
an explanation for its conclusion, while our argumentation-based agent can relate
its decisions to an explicit representation of the legal background. This enhances
the transparency of the inquiry process.

60

7. Conclusion

We have studied the task of detecting stability: given a specific structured
argumentation theory, based on an instance of ASPIC+, can adding information
result in a changed justification status of a specific literal? We have shown that
the task is CoNP-complete, which is problematic in practical applications, such
as identifying the termination criterion in human-computer inquiry dialogue. To
resolve this issue, we proposed a polynomial-time algorithm STABILITY-LABEL

for estimating stability that improves on the algorithms in Testerink et al. (2019b)
and Odekerken et al. (2020). We have shown that the refined algorithm is sound
and runs in polynomial time. Thanks to these properties, the algorithm has been
taken into use as part of three inquiry agents at the Netherlands Police with a legal
reasoning subtask.

In addition, we have identified conditions under which STABILITY-LABEL is
complete. Given that the algorithm is not for all argumentation theories complete,
there are examples of argumentation theories for which the algorithm does not
detect that a literal is stable. In our use cases, this can result in the agent asking
unnecessary questions. Still, for our applications, asking a redundant question in
some specific situations is preferable to using an exact algorithm for stability that
runs in exponential time, such as STABILITY-NAIVE in Section 3.2.

In this work on stability, we have shown that an inherently complex task in
dynamic argumentation can be performed accurately in real time – provided that
the input satisfies some specific conditions – using an approximation algorithm.
Thanks to this approximation approach, we were able to present one of the first
polynomial algorithms for a dynamic argumentation task defined on structured ar-
gumentation frameworks. We therefore conclude that the design and (theoretical)
analysis of approximation algorithms for complex tasks in computational argu-
mentation is an interesting research direction, which opens up possibilities for
real-world applications of computational argumentation.

In future research related to stability, our work can be extended in various
ways. A first extension would be to consider more expressive instantiations of
ASPIC+, for example an instantiation in which preferences between rules can be
specified. This would allow for more natural argumentation theories, but the ap-
proximation algorithm would require more complex labelling rules than the ones
in Algorithms 2 and 3 and may have additional cases of incompleteness.

A second extension would be to study the stability problem when considering
other changes than axiom addition; for example: would the justification status of
a literal change if we would add or remove some rules? Although these extensions

61

would not be of particular interest for our use cases at the police, where the legal
rules cannot be changed by users, they could be interesting for other applications.
However, when adding those, there are some subtleties to keep in mind. First, the
application of a change operation to an argumentation theory should result in a
valid argumentation theory. If, for example, a rule is added to the argumentation
system, then its antecedents as well as its consequent should be in the language. In
addition, it is desirable that the resulting argumentation theory (still) satisfies the
rationality postulates identified by Caminada and Amgoud (2007), which is not
trivial when changes in strict rules, axiom premises and preferences are allowed
(see Modgil and Prakken (2013)). Lastly, restrictions on changes (such as only
adding axioms from Q to the knowledge base) should be chosen with care, since
they prevent the stability problem from becoming trivial.

A third and final extension would be to further explore the notions of relevance
and explainability in relation to stability. As we mentioned in Section 5.1.4, we
already use an approximation algorithm to select relevant questions, based on the
labelling found by STABILITY-LABEL. Similarly, this labelling can be used to au-
tomatically generate explanations (Section 5.2). In order to assess the quality of
these algorithms, we first need to formally define notions of relevance of explain-
ability. Subsequently, we could evaluate them by a theoretical and/or empirical
analysis. This would give more insight in the quality of these algorithms, and
thereby make our argument-based inquiry solution more applicable for general
use.

Funding

This research has been partly funded by the Dutch Ministry of Justice and the
Netherlands Police.

62

Appendix A. Computing the justification status of a literal

In our experiments and proofs, we use a sound and complete algorithm, to
decide upon the justification status of a literal in the (current) argumentation
theory. We will refer to this algorithm as JUSTIFICATION-LABEL. Just like
STABILITY-LABEL, it is based on a labelling of literals and rules and is poly-
nomial. JUSTIFICATION-LABEL is sound, complete and runs in O(|L|3 · |R| +
|L|2 · |R|2). For full proofs of soundness, completeness and time complexity, we
refer to https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approxim
ating-stability-applied-argument-based-inquiry.

Lemma 5 (Justification status in polynomial time). Given an argumentation the-
ory AT = (AS,K) where AS = (L,R,), the justification status of l in AT can be
found in polynomial time.

Appendix B. Proofs

Since the full proofs for lemmas and propositions in the paper are quite exten-
sive, we collect them here in the appendix. In Section Appendix B.1, we give the
full proof of Proposition 1 (the STABILITY problem is CoNP-complete). In Sec-
tion Appendix B.2 we give a more precise specification of which arguments are
either in the grounded extension or attacked by an argument in the grounded exten-
sion in our ASPIC+ instantiation, as presented in Section 2. These specifications
will be useful for the soundness and completeness proofs of STABILITY-LABEL.
The proof of Lemma 1, showing that the four justification statuses introduced
in Section 2.3 are mutually exclusive and complementary, can be found in Sec-
tion Appendix B.3. In Sections Appendix B.6 and Appendix B.7, we give the full
proves of the soundness of the algorithms PREPROCESS and STABILITY-LABEL,
respectively. Finally, we give the conditional completeness proof in Section Ap-
pendix B.8.

Appendix B.1. Complexity of the stability problem
Proposition 1 (Complexity of STABILITY problem). Given an argumentation the-
ory AT = (AS,K) where AS = (L,R,) and Q is a set of queryables, the STA-
BILITY problem is CoNP-complete.

Proof. Consider an argumentation theory AT = (AS,K) where AS = (L,R,)
and Q is the set of queryable literals.

63

https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approximating-stability-applied-argument-based-inquiry
https://www.uu.nl/en/onderzoek/ai-labs/nationaal-politielab-ai/approximating-stability-applied-argument-based-inquiry

We will show that STABILITY is CoNP-complete by a CoNP-hardness proof
and a proof that the STABILITY problem is in CoNP. In order to show that STABIL-
ITY is CoNP-hard, we will give a polynomial-time computable reduction f from
the known CoNP-hard problem UNSAT, which is the decision problem of deter-
mining whether a given boolean expression in conjunctive normal form (CNF) has
a truth assignment of its variables that makes the output true.

Formally: consider a boolean expression ϕ = (l11∨ . . .∨ l1k)∧ . . .∧(ln1∨ . . .∨
lnm) in CNF; let C be the set containing all literals in ϕ and let vI be the valuation
function for propositional classical logic given the truth assignment function I :
C → {True,False}. The goal of the UNSAT problem is to decide if vI(ϕ) is False
for every truth assignment I .

Next, we give a reduction function from UNSAT to the STABILITY problem.
Let f be the function that converts an arbitrary formula ϕ = (l11 ∨ . . . ∨ l1k) ∧
. . . ∧ (ln1 ∨ . . . ∨ lnm) in CNF to an argumentation theory AT = (AS,K) with an
argumentation system AS = (L,R,) and a set of queryables Q (illustrated in
Figure 3) such that:

• L consists of:

(1) For each literal in C: the literal and its negation; and

(2) For each clause in ϕ: a clause-specific literal and its negation; and

(3) A topic literal and its negation.

The following formula expresses this formally, using numbers in superscript
to refer to the three items identified above: L = C∪{−lij | lij ∈ C}(1)∪{ci |
∃j : lij ∈ C} ∪ {−ci | ∃j : lij ∈ C}(2) ∪ {t,¬t}(3);

• R consists of:

(1) For each clause i and for each literal lij in this clause: lij ⇒ li; and

(2) (c1, . . . , cn) ⇒ t.

Formally: R = {lij ⇒ ci | lij ∈ C}(1) ∪ {(c1, . . . , cn) ⇒ t}(2).

• corresponds to classical negation.

• Q contains all literals occurring in the CNF ϕ and their negations: Q =
{lij | lij ∈ C ∨ −lij ∈ C}; and

• K is empty: K = ∅.

64

We now examine the time needed for computing the reduction f(ϕ) for an
arbitrary formula ϕ in CNF. For each literal lij occurring in ϕ, two literals are
added to the language L, one rule is added to R and two literals are added to Q.
Furthermore, for each clause two literals are added to L. Finally, the topic literal
and its negation are added to L and a single rule for the topic literal is added to R.
Since the number of clauses cannot exceed the number of literals occurring in ϕ,
this reduction can be computed O(|C|) operations; hence the reduction f can be
computed in polynomial time.

Next, we prove that there is no truth assignment I such that vI(ϕ) = True
iff t is stable in AT w.r.t. Q.

• Right to left: we prove this by contraposition. Suppose that there exists a
truth assignment I such that vI(ϕ) = True. K is empty, so Arg(AT) = ∅,
hence there is no argument for t in Arg(AT). Now let K′ = {lij ∈ Q |
vI(lij) = True} and let AT′ be (AS,K′). vI(ϕ) = True, hence for each i ∈
[1 . . n], vI(li1∨ . . .∨ lik) = True. Consider an arbitrary i ∈ [1 . . n]. vI(li1∨
. . .∨cik) = True, so there is a j ∈ [1 . . k] such that vI(lij) = True. Then by
definition of K′, lij ∈ K′, which implies that there is an observation-based
argument for cij . Furthermore, there is a rule lij ⇒ ci in R; therefore there
is a rule-based argument for ci in Arg(AT′). Since we chose i arbitrary, for
each i ∈ [1 . . n], there is a rule-based argument for ci in Arg(AT′). Then
there is an argument for t based on the rule (c1, . . . , cn) ⇒ t in Arg(AT′).
There is no argument for t in Arg(AT) and AT ∈ FQ(AT), so by Definition 8,
t is unsatisfiable in AT. There is an argument for t in Arg(AT′); this implies
that t is not unsatisfiable in AT′. Then by Definition 11, t is not stable in AT
w.r.t. Q.

• Left to right: we prove this part by contraposition as well. Suppose that t
is not stable in AT w.r.t. Q. Since there is no argument (for t) in Arg(AT)
(K = ∅), we have that t is unsatisfiable in AT. By Definition 11, this implies
that there exists an AT′ = (AS,K′) in FQ(AT) such that there is an argument
for t in Arg(AT′). t /∈ Q, so the argument for t must be rule-based. The
only rule for t in R is (c1, . . . , cn) ⇒ t, so there is an argument for t based
on this rule in Arg(AT′). Then for each i ∈ [1 . . n], there is an argument
for ci in Arg(AT′). Consider an arbitrary i ∈ [1 . . n]. ci /∈ Q, so there must
be a rule-based argument for ci. Let {ri1, . . . , rik} be the rules for li in R.
Let rij : lij ⇒ ci (with i ∈ [1 . . k]) be an arbitrary rule such that there is an
argument based on rij in Arg(AT′). Then there must be an argument for lij

65

in Arg(AT′). This argument must be observation-based, hence lij ∈ K′. Let
I be a truth assignment such that:

I(lij) =

{
True if lij ∈ K′

False if lij /∈ K′.

Given that lij ∈ K′, we have that vI(lij) = True and therefore vI(li1 ∨ . . . ∨
lik) = True as well. Since we chose i arbitrary, this is the case for every i in
[1 . . n]. Then vI((l11 ∨ . . .∨ l1k)∧ . . .∧ (ln1 ∨ . . .∨ lnm)) = vI(ϕ) = True.
So there exists a truth assignment I such that vI(ϕ) = True.

We have shown that there exists a reduction function f from UNSAT to the
STABILITY problem that can be computed in polynomial time, such that vI(ϕ) is
False for every truth assignment I iff t ∈ L is stable in f(ϕ) = AT = (AS,K) w.r.t.
Q. This implies that UNSAT ≤p STABILITY. UNSAT is CoNP-hard, so STABILITY
is CoNP-hard.

Now we prove that STABILITY is in CoNP. A decision problem is in CoNP iff
for any no-instance x there is a ”certificate” that a polynomial-time algorithm can
use to verify that x is a no-instance. So STABILITY is in CoNP iff for any argumen-
tation theory AT = (AS,K) where AS = (L,R,), for any set of queryables Q
and for any l ∈ L such that l is not stable in AT w.r.t. Q, there is a polynomial-size
certificate that a polynomial-time algorithm can use to verify that l is not stable in
AT w.r.t. Q. A suitable certificate would be some knowledge base K′ ⊆ Q such
that the justification status of l in (AS,K′) differs from the justification status of l
in AT. Obviously K′ is polynomial-size in the input since K′ ⊆ Q. Furthermore,
l is not stable in AT w.r.t. Q iff there is some AT′ ∈ FQ(AT) such that the justifi-
cation status of l in AT′ differs from the justification status of l in AT. Given the
certificate K′, the following procedure can be used to verify that l is not stable in
AT w.r.t. Q:

1. Verify that K′ is consistent and that K ⊆ K′ ⊆ Q. If this is the case, then
(AS,K) ∈ FQ(AT). This step can be done in polynomial time.

2. Find the justification status of l in AT. By Lemma 5, this can be done in
polynomial time.

3. Find the justification status of l in AT′. This can be done in polynomial time
(Lemma 5).

66

4. Verify that the justification status of l in AT differs from the justification
status of l in AT′. This step can be done in polynomial time as well.

To conclude, we have shown that the STABILITY problem is CoNP-hard and
that it is in CoNP. This implies that STABILITY is CoNP-complete.

Appendix B.2. Specification “in” and “out” the grounded extension
In Lemmas 6 and 7, we give a more precise specification of which arguments

are either in the grounded extension (Lemma 6) or attacked by an argument in
the grounded extension (Lemma 7). These lemmas will be used repeatedly in the
soundness and conditional completeness proofs in Sections Appendix B.7 and
Appendix B.8

Lemma 6 (Specification “in” grounded extension). Let AT = (AS,K) be an ar-
gumentation theory with argumentation system AS = (L,R,). An argument
A ∈ Arg(AT) is in the grounded extension G(AT) iff each argument attacking A
is attacked by an observation-based argument.

Proof. The proof from right to left is trivial: observation-based arguments cannot
be attacked (Definition 5), so each observation-based argument is in G(AT). If
each argument attacking A is attacked by an observation-based argument, then A
is acceptable w.r.t. G(AT), so A ∈ G(AT).

We now prove the left to right part by contradiction. Suppose that A ∈
G(AT) and that there is an argument B attacking A, and B is not attacked by an
observation-based argument. We will prove that there is a strict subset of G(AT)
that is complete, which contradicts the assumption that G(AT) is a grounded ex-
tension. We construct this set S as follows: S = {C ∈ G(AT) | there is no C′ ∈
sub(C) s.t. C′ attacks B}.

First, we show that S is a strict subset of G(AT). Since A is attacked by B,
there must be some A′ ∈ sub(A) such that conc(B) ∈ conc(A′) and conc(A′) /∈
K. Given that B cannot be observation-based (otherwise B would be in G(AT),
which contradicts the conflict-freeness of G(AT)) and conc(A′) ∈ conc(B) (by
the symmetry of), A′ attacks B. This implies that A cannot be in S, hence
S ⊂ G(AT). Next, we prove that S is complete.

• S ⊂ G(AT) and G(AT) is conflict-free, so S is conflict-free.

• S is an admissible set: suppose, towards a contradiction, that there is some
D ∈ S such that some argument E attacks D and each argument attack-
ing E is not in S. E attacks D, so there is an argument D′ ∈ sub(D)

67

such that conc(E) ∈ conc(D′). Since D ∈ G(AT), which is complete,
there must be some argument in Arg(AT) that attacks E, which means that
conc(E) /∈ K. Furthermore, since the contradiction function is symmet-
ric, conc(D′) ∈ conc(E). This implies that D′ attacks E and therefore
D′ /∈ S. However note that D′ ∈ G(AT): D ∈ G(AT), so each argument
attacking D is attacked by some argument in G(AT); each argument attack-
ing D′ also attacks D and therefore must be attacked by some argument
in G(AT) so D′ ∈ G(AT). By definition of S, D′ has a subargument that
attacks B. But then D must have the same subargument attacking B, so
D /∈ S; a contradiction. As a consequence, S must be an admissible set.

• Each argument that is acceptable w.r.t. S is in S: suppose, towards a
contradiction, that there exists an argument D ∈ Arg(AT) that is acceptable
w.r.t. S and D /∈ S. If D is acceptable w.r.t. S, then D is acceptable w.r.t.
G(AT); therefore D ∈ G(AT). D /∈ S, so by definition of S there is a
subargument D′ ∈ sub(D) such that D′ attacks B. Let B′ ∈ sub(B) be
the subargument on which D′ attacks B: conc(D′) ∈ conc(B′). By an
earlier assumption, B is not attacked by an observation-based argument, so
conc(D′) /∈ K. Furthermore, by symmetry of contradiction, conc(B′) ∈
conc(D′), which means that B′ attacks D′ and therefore also attacks D.
Since D is acceptable w.r.t. S, there must be an argument E in S attacking
B′. But then E would attack B as well, hence E /∈ S, a contradiction. As a
result, each argument that is acceptable w.r.t. S is in S.

To conclude, there is a set S ⊂ G(AT) such that S is complete. This con-
tradicts our assumption that G(AT) is the grounded extension since the grounded
extension is minimal w.r.t. set inclusion. So if A ∈ G(AT), then each argument
attacking A is attacked by an observation-based argument.

Lemma 7 (Specification “out” arguments). Let AT = (AS,K) be an argumen-
tation theory with argumentation system AS = (L,R,). An argument A ∈
Arg(AT) is attacked by an argument in the grounded extension G(AT) (A is “out”),
iff A is attacked by an observation-based argument.

Proof. Right to left: if an argument A ∈ Arg(AT) is attacked by an observation-
based argument B, then B cannot be attacked, hence must be in G(AT). So A is
attacked by an argument in the grounded extension.

Left to right: let A ∈ Arg(AT) be an argument that is attacked by some
B ∈ G(AT) and suppose, towards a contradiction, that A is not attacked by any

68

observation-based argument. Then there is a subargument A′ ∈ sub(A) such that
conc(B) ∈ conc(A′) and therefore, by the symmetry of , conc(A′) ∈ conc(B),
conc(A′) /∈ K and conc(B) /∈ K, hence A′ attacks B. B ∈ G(AT), so by
Lemma 6, A′ must be attacked by an observation-based argument. However, this
observation-based argument would attack A as well; a contradiction. To conclude,
A is attacked by an observation-based argument.

Appendix B.3. Justification statuses are exclusive and complementary
Next, we give the full proof of Lemma 1, which was introduced in Section 2.3

of the main paper.

Lemma 1. The statement justification statuses unsatisfiable, defended, out and
blocked from Definition 8 are mutually exclusive and complementary.

Proof. Consider an arbitrary argumentation theory AT = (AS,K) where AS =
(L,R,) and let l ∈ L be an arbitrary literal. We consider all possibilities.

• If there is an argument for l in Arg(AT), then l cannot be unsatisfiable in AT.

– If there is an argument for l in G(AT), then l is defended and cannot be
blocked in AT. This also means that l cannot be out in AT: that would
require that each argument for l in A is attacked by an argument in
G(AT), which would contradict conflict-freeness of G(AT).

– Alternatively, there is an argument for l in Arg(AT), but not in G(AT).
Then l cannot be defended in AT.

* If there is an argument for l in Arg(AT) but each argument for l
in Arg(AT) is attacked by an argument in the grounded extension
G(AT), then l is out and not blocked in AT.

* Alternatively, there is an argument for l in Arg(AT), but not in
G(AT) and at least one argument for l in Arg(AT) is not attacked
by any argument in G(AT). Then l is blocked and cannot be out
in AT.

• If there is no argument for l in Arg(AT), then l is unsatisfiable and not de-
fended, out or blocked in AT.

69

Appendix B.4. Soundness, completeness and time complexity of STABILITY-LABEL

In Sections Appendix B.5–Appendix B.8, we prove the time complexity,
soundness and conditional completeness of our algorithm STABILITY-LABEL.

We chose to present them here in a different order than in the paper: Propo-
sition 4 on time complexity is proven before the soundness and conditional com-
pleteness propositions in the paper: in order to prove soundness, we need to show
that STABILITY-LABEL terminates, which directly follows from the facts that the
algorithm runs in polynomial time and the argumentation theory’s language and
rule set are finite. Therefore, we will prove Propositions 2–4 before Proposition 1.

Appendix B.5. Time complexity of the stability algorithm
In this section, we specify the time complexity of STABILITY-LABEL in terms

of its input (Proposition 4). Since the first step of STABILITY-LABEL is running
the PREPROCESS algorithm, we start with the time complexity of this algorithm
in a separate lemma.

Lemma 4 (Time complexity PREPROCESS). The time complexity of PREPRO-
CESS is O(|L|2 + |L| · |R|2).
Proof. In the following proof, {c1, . . . , c14} is a set of positive constants.

• The PREPROCESS algorithm starts with a for loop in line 2–4, which is iter-
ated |L| times. A single iteration of line 2 takes constant time c1. A single
iteration of line 3 requires for each literal l ∈ Q a check that no contradic-
tory literal l′ ∈ l is in K. No literal can have more than |L| contradictories,
so a single iteration of line 3 takes at most c2 · |L| operations. An iteration
of line 4 can be done in constant time c3. Then all iterations of line 2–4
require at most (c1 + |L| · c2 + c3) · |L| operations.

• Lines 5 and 6 are repeated |R| times and take constant time per iteration,
which means that these lines take (c4 + c5) · |R| steps in total.

• Line 7 takes constant time c6 and is executed just once.

• Next we consider the while-loop (lines 8–14), which iterates until no la-
bel changed in the previous loop. Thanks to the check Lp[r] = ⟨1, 0, 0, 0⟩
in line 11, each rule can change label at most once, hence the while-loop
iterates at most |R| times.

– Line 8 only requires a label check, which can be done in constant time
c7; the total time required for all iterations of line 8 is at most c7 · |R|.

70

– Similarly, the total time needed for all iterations of line 9 does not
exceed c8 · |R|.

– The for-loop iterates |R| times for each iteration of the while-loop, so
lines 10–13 are executed at most |R|2 times in total. A single execu-
tion of line 10 takes constant time c9. Line 11 checks all antecedents
of each rule, which requires at most c10 · |L| checks per execution; a
single execution of line 12, 13 and 14 take constant time c11+c12+c13.
So the total time required for all executions of lines 10–14 is at most
(c9 + c10 · |L|+ c11 + c12 + c13) · |R|2.

• Finally, line 15 is executed just once and takes constant time c14.

The total time required for Algorithm 1 is at most (c1+|L|·c2+c3)·|L|+(c4+
c5)·|R|+c6+(c7+c8)·|R|+(c9+c10 ·|L|+c11+c12+c13)·|R|2+c14. As a result,
the time complexity of the preprocessing step must be O(|L|2 + |L| · |R|2).

Proposition 4 (Time complexity STABILITY-LABEL). The time complexity of
STABILITY-LABEL is O(|L|3 · |R|+ |L|2 · |R|2).

Proof. We will prove this by first showing the amount of time that is required
for a single execution of a given line (also given in the second column of the
table below). Next, we will consider the number of iterations of each line (third
column), multiply them to get the total time required for each line (fourth column)
and combine this into the big-O notation (final row). In the following, we will
denote positive constants by ci (with i ∈ [1 . . 29]).

71

Line Time single execution Max iterations Total time

2

(c1 + |L| · c2 + c3) · |L|+
(c4 + c5) · |R|+ c6+
(c7 + c8) · |R|+
(c9 + c10 · |L|+ c11+
c12 + c13) · |R|2 + c14

1

(c1 + |L| · c2 + c3) · |L|+
(c4 + c5) · |R|+ c6+
(c7 + c8) · |R|+
(c9 + c10 · |L|+ c11+
c12 + c13) · |R|2 + c14

3 c15 1 c15
4 c16 |L| c16 · |L|
5 c17 · (|L|+ |R|) |L| c17 · (|L|2 + |L| · |R|)
6 c18 · |R| |L| c18 · |L| · |R|
7 c19 5 · |L| · |R| 5 · c19 · |L| · |R|
8 c20 5 · |L| · |R| 5 · c20 · |L| · |R|
9 c21 · |L| 5 · |L| · |R| 5 · c21 · |L|2 · |R|
10 c22 5 · |L| · |R| 5 · c22 · |L| · |R|
11 c23 · (|L|+ |R|) 4 · |R| 4 · c23 · (|L| · |R|+ |R|2)
12 c24 4 · |R| 4 · c24 · |R|
13 c25 · |R| 4 · |L| 4 · c25 · |L| · |R|
14 c26 5 · |L|2 · |R| 5 · c26 · |L|2 · |R|
15 c27 · (|L|+ |R|) 5 · |L|2 · |R| 5 · c27 · (|L|3 · |R|+ |L|2 · |R|2)
16 c28 5 · |L|2 · |R| 5 · c28 · |L|2 · |R|
17 c29 · |R| 4 · |L| 4 · c29 · |L| · |R|
18 c30 1 c30
Total time required for all lines O(|L|3 · |R|+ |L|2 · |R|2)

We assume that for each literal l ∈ L, the list of rules for that literal can
be obtained in constant time, as well as the list of rules having that literal as an
antecedent. As a result, checking if there are rules for this literal can be done in
constant time, since we can check in constant time if the list of rules for the literal
is empty. For any literal l ∈ L, we can check in constant time if l ∈ Q.

First we show the amount of time that is required for a single execution of
a given line.

• Line 2 requires running PREPROCESS(L,R, ,Q,K), which takes (c1 +
|L| · c2 + c3) · |L|+ (c4 + c5) · |R|+ c6 + (c7 + c8) · |R|+ (c9 + c10 · |L|+
c11 + c12 + c13) · |R|2 + c14 steps, as shown in Lemma 4.

• Line 3 takes constant time c15.

• Line 4 takes a new literal l from L; a single execution of this line requires
a check if l ∈ Q, which, by assumption, takes constant time and, if l /∈ Q,
requires an additional check if there is a rule for l in R, which takes constant

72

time as well. To conclude, a single execution of line 4 takes constant time
c16.

• A single execution of line 5 requires labelling a literal, which can be done
in c17 · (|L|+ |R|) time: in the worst case, it requires checking the presence
of l and all its contradictories (|l| ≤ |L|) in Q and K, as well as the labels
of all (max |R|) rules for that literal or a contradictory. Therefore, line 5
requires c17 · (|L|+ |R|) time per execution.

• In a single execution of line 6, all rules having l as an antecedent are added
to TODO-SET. There are at most R rules having l as an antecedent, so this
takes at most c18 · |R| time.

• Line 7 only needs to check if a set is empty, which can be done in constant
time c19. The next line only needs to pop an element from a set, which can
be done in constant time as well, so line 8 needs c20 time.

• Line 9 relabels a rule, which requires checking the labels of all antecedents
of this rule. Since a rule has at most |L| antecedents, this takes at most
c21 · |L| time per execution of line 9.

• Lines 10, 12 and 16 only check if the label of a rule or literal changed; this
can be done in constant time c22, c24 and c28, respectively.

• Lines 11 and 15 relabel a literal. As explained before (for line 5), this
requires checking the presence of a literal and all its contradictories in Q
and K, as well as checking the labels of all rules for that literal or one of its
contradictories. A single execution therefore takes c23 · (|L|+ |R|) time for
line 11 and c27 · (|L|+ |R|) time for line 15.

• Lines 13 and 17 both add at most |R| rules to TODO-SET, so a single execu-
tion of line 13 needs at most c25 · |R| time and a single execution of line 17
needs at most c29 · |R| time.

• A single execution of line 14 takes a literal from a list of contradictories,
which can be done in constant time c26.

• Finally, a single execution of line 18 takes constant time c30.

Now we consider the number of iterations of each line; this is also repre-
sented in the third column of the table above.

73

• Lines 2, 3 and 18 are executed just once.

• Lines 4–6 are repeated for each literal in Q or for which there is no rule in
R. This implies that lines 4–6 are executed at most |L| times.

• The lines 7–10 are executed once in every iteration of the while loop. The
total number of iterations of the while loop equals the number of times a
rule is added to TODO-SET. A rule is only added to TODO-SET if it was not
yet visited (line 6) or if the label of one of its antecedents changed after a
relabelling (line 13 or line 17). Since the label of a literal can change at
most four times (i.e. at most four booleans can be turned to False), each rule
r ∈ R is relabelled at most 5 · |ants(r)| times. There are |R| rules, so
lines 7–10 are executed at most 5 · |L| · |R| times. Besides, we will see in
Lemma 9 that in practice, the maximum of changes is three, which means
that these lines are executed at most 4 · |L| · |R| times.

• Next, we consider lines 11 and 12. These lines are only executed if the label
of a rule changed. A label can only be changed by turning one of the four
booleans to False. Therefore, for each rule, its label can be changed at most
four times (again, we will see in Lemma 9 that in practice, the maximum
of changes is three). There are |R| rules in total, so lines 11 and 12 are
executed at most 4 · |R| times.

• Lines 13 and 17 are only executed just after the label of a literal changed.
This can happen at most four times for each literal, because at most four
booleans can be turned to False (again, we will see in Lemma 9 that the
maximum of changes per label is in practice 3). There are |L| literals in
total; therefore lines 13 and 17 are executed at most 4 · |L| times.

• Finally, lines 14–16 are executed at most |L| times (i.e. once for each l′ ∈
conc(r)) for each of the maximal 5 · |L| · |R| iterations of the while loop.
This means that lines 14–16 are executed at most 5 · |L|2 · |R| times.

An upper bound on the total amount of time that is needed for all exe-
cutions of a single line can now be obtained by multiplying the maximum time
required for a single execution by the number of executions of each line. We do
this in the fourth column of our table. From these results, it becomes clear that the
total running time of Algorithm 4 is dominated by the lines for relabeling, in par-
ticular of line 15. To conclude, the total time complexity of STABILITY-LABEL

(Algorithm 4) is O(|L|3 · |R|+ |L|2 · |R|2).

74

Appendix B.6. Soundness of the preprocessing algorithm
In this section, we show that PREPROCESS (Algorithm 1) is sound: if a literal

is labelled ⟨1, 0, 0, 0⟩, then there is no future argumentation theory in which there
is an argument for that literal. Before we can prove this in Section Appendix
B.6.2, we first need some additional definitions in Section Appendix B.6.1.

Appendix B.6.1. Height of arguments
In this section, we introduce the notions of argument height and direct sub-

arguments, since we will use them repeatedly in our induction proofs for the
soundness of the preprocessing step (Section Appendix B.6.2) and the conditional
completeness of the STABILITY-LABEL algorithm (Section Appendix B.8). Intu-
itively, the height of an argument is the maximum number of inferences between
a premise and the conclusion of the argument.

Definition 17 (Height of arguments). Let AT = (AS,K) be an argumentation
theory and let A ∈ Arg(AT) be an argument. The height h(A) of A is:

• if A is an observation-based argument then h(A) = 0;

• if A is a rule-based argument of the form A1, . . . , Am ⇒ c, then h(A) =
1 + max(h(A1), . . . , h(Am)).

Given a rule-based argument, the arguments for the antecedents of the rule on
which the arguments is based are the direct subarguments.

Definition 18 (Direct subarguments). Let AT = (AS,K) be an argumentation
theory and let A ∈ Arg(AT) be an argument. The direct subarguments dirsub(A)
of A are:

• if A is an observation-based argument then dirsub(A) = ∅.

• if A is a rule-based argument of the form A1, . . . , Am ⇒ c then the set of
direct subarguments dirsub(A) of A is {A1, . . . , Am}.

In the proofs that follow, we will repeatedly use the notion of argument height
and direct subarguments to prove a certain property of an argument by induction,
in the following way. As a base case, we prove the property for arguments with
height of 0 or 1; consequently, we assume that the property holds for (direct) sub-
arguments A′ with h(A′) ≤ k and prove the property for argument A with height
h(A) = k + 1. Note that Definition 4 on arguments enforces that all arguments
have finite height, since the number of steps for constructing an argument is finite.

75

Appendix B.6.2. Soundness proof
In the next lemma, we prove the soundness of the preprocessing step: if a lit-

eral l is labelled Lp[l] = ⟨1, 0, 0, 0⟩ by PREPROCESS, then l is stable-unsatisfiable
in that argumentation theory with respect to the set of queryables. This property
will also be useful in the soundness proofs for STABILITY-LABEL in Section Ap-
pendix B.7.

Lemma 2 (Soundness preprocessing step). Let AT = (AS,K) be an argumenta-
tion theory where AS = (L,R,) and let Q be a set of queryables. Furthermore
let Lp be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, , Q and
K. For each l ∈ L: if Lp[l] = ⟨1, 0, 0, 0⟩, then l is stable-unsatisfiable in AT w.r.t.
Q.

Proof. We prove this by contraposition. Let AT = (AS,K) be an argumentation
theory where AS = (L,R,) and let Q be a set of queryables. Further let l ∈ L
be a literal and let Lp be the labelling after the preprocessing step.

Now suppose that l is not stable-unsatisfiable in AT w.r.t. Q. Then by Defini-
tion 11, there exists some argumentation theory AT′ = (AS,K′) in FQ(AT) such
that there is an argument A for l in Arg(AT′). We now prove by induction on the
height of A that l is labelled ⟨1, 1, 1, 1⟩ by Algorithm 1.
Base case: Suppose that h(A) = 0. Then l ∈ K′. This implies that l ∈ Q and for
each l′ ∈ l: l′ /∈ K, so l is labelled ⟨1, 1, 1, 1⟩ in Algorithm 1 line 3. Since there is
no operation in Algorithm 1 that labels literals from ⟨1, 1, 1, 1⟩ to ⟨1, 0, 0, 0⟩, we
have that Lp[l] = ⟨1, 1, 1, 1⟩.
Induction hypothesis: If A is an argument for l in Arg(AT′) and h(A) ≤ k, then
Lp[l] = ⟨1, 1, 1, 1⟩.
Induction step: Now suppose that h(A) = k + 1. Then A must be based on
some rule r and for each Ai ∈ dirsub(A): Ai in Arg(AT′) and h(Ai) ≤ k. By
the induction hypothesis, for each a ∈ ants(r): Lp[a] = ⟨1, 1, 1, 1⟩, so Lp[l] is
labelled Lp[l] = ⟨1, 1, 1, 1⟩ by Algorithm 1 line 13.

Since each argument A in Arg(AT′) has a finite h(A), Lp[l] = ⟨1, 1, 1, 1⟩. As
there is no operation that labels literals from ⟨1, 1, 1, 1⟩ to ⟨1, 0, 0, 0⟩, we have
that Lp[l] = ⟨1, 1, 1, 1⟩ (so Lp[l] ̸= ⟨1, 0, 0, 0⟩). By contraposition: if Lp[l] =
⟨1, 0, 0, 0⟩, then for each AT′ ∈ FQ(AT): l is unsatisfiable in AT′. In other words:
l is stable-unsatisfiable in AT w.r.t. Q.

Appendix B.7. Soundness of the stability algorithm
In this section, we show that STABILITY-LABEL (Algorithm 4) is sound: if

a literal l ∈ L is labelled stable in AT w.r.t. Q, then l is stable in AT w.r.t. Q.

76

Before we can prove this in Section Appendix B.7.2, we first need some additional
definitions in Section Appendix B.7.1.

Appendix B.7.1. Interim labelling
In order to prove the soundness of the STABILITY-LABEL algorithm, we will

repeatedly use the notion of interim label, that is: the label at some point before
the labelling is finished.

Definition 19 (Interim labelling). Let AT = (AS,K) be an argumentation theory
where AS = (L,R,) and let Q be a set of queryables. Furthermore let L be
the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and
K. For any literal or rule x ∈ L ∪ R, we denote the interim labelling state of x
immediately after the i’th iteration of the while loop as Li[x].

Given that the interim labelling Li is the labelling state immediately after the
i’th iteration of the while loop, L0 is the labelling state just before the start of
the first iteration of the while loop; to be precise: between line 6 and 7 of Algo-
rithm 4. At this point, the preprocessing step has finished (line 2) and literals that
are queryable or that are not the consequent of any rule are relabelled (line 5).
Note that the labels of rules at this point are unchanged compared to the label
obtained from preprocessing.

Remark 1 (No rule label change between preprocessing and while loop). Let
AT = (AS,K) be an argumentation theory where AS = (L,R,) and let Q be a
set of queryables. Let Lp be the labelling obtained by PREPROCESS (Algorithm 1)
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R,

, Q and K. For each rule r ∈ R, L0[r] = Lp[r].

Proof. By Definition 19, L0[r] is the interim labelling state of r immediately after
the 0’th iteration of the while loop. Between the end of the preprocessing step
(after Algorithm 4 line 2) and the start of the while loop (from line 7), there is
no operation that changes the labelling state of any rule. Therefore, for each rule
r ∈ R, Lp[r] = L0[r].

Another new concept that is related to the interim labelling is the number
of the iteration of the while loop in which one or more booleans from u, d, o
and b is turned from True to False. We will repeatedly use this in our induction
proofs; for example, if we know that the d-boolean of literal l was relabelled
for the last time in iteration i, then we know that l is labelled ¬Li[l].d, but also
¬Li+1[l].d, ¬Li+2[l].d, etc. This means for example that each rule r that has l as

77

an antecedent will be considered for relabelling in some iteration j > i and can be
labelled ¬Lj[r].d at that point, because we know that l is an antecedent of r and l
is labelled ¬Lj−1[l].d.

Definition 20 (Last boolean flip iteration). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,) and let Q be a set of queryables. Let J = 2{u,d,o,b}

be the set of all subsets of the labelling booleans u, d, o and b. For each J ∈ J and
for each literal or rule x ∈ L∪R, we denote by cJ(x) the number of the iteration
of the while loop in Algorithm 4 (executed on L, R, , Q and K) in which the last
boolean j ∈ J was turned from True to False – provided that each boolean j ∈ J
is False in the final labelling L. In case there is some j ∈ J such that j is True in
the final labelling L, cJ(x) = ∞.

Example 16 (Last boolean flip iteration). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,). L = {q,¬q, a,¬a}, R = {q ⇒ a} and corre-
sponds to classical negation. The set of queryables is {q,¬q} and the knowledge
base is K = {q}.

Then Lp[q] = Lp[a] = ⟨1, 1, 1, 1⟩ and Lp[¬q] = Lp[¬a] = ⟨1, 0, 0, 0⟩. Be-
fore the first iteration of the while loop (i.e. Algorithm 4 line 7–17), q and ¬q
are considered for relabelling. q’s label is changed into L0[q] = ⟨0, 1, 0, 0⟩, while
L0[¬q] = Lp[¬q] = ⟨1, 0, 0, 0⟩. No rule in R is relabelled between the prepro-
cessing step and the start of the while-loop, so L0[q ⇒ a] = Lp[q ⇒ a] =
⟨1, 1, 1, 1⟩. Then the rule q ⇒ a is added to TODO-SET. In the first iteration
of the while loop, this rule is popped from the TODO-SET and relabelled so that
L1[q ⇒ a] = ⟨0, 1, 0, 0⟩. Since L1[q ⇒ a] ̸= L0[q ⇒ a], the consequent a is
relabelled, so that L1[a] = ⟨0, 1, 0, 0⟩. After that, ¬a is considered for relabelling
as well, but its label does not change: L1[¬a] = ⟨1, 0, 0, 0⟩. At that point, the
TODO-SET is empty and the algorithm terminates – which implies that for each
x ∈ L ∪R : L[x] = L1[x].

c{u,o,b}(a) = 1 because L[a] = L1[a] = ⟨0, 1, 0, 0⟩ and in L0[a] not all
booleans in {u, o, b} are turned false yet. c{d,o,b}(¬a) = c{d,o}(¬a) = c{d,b}(¬a) =
c{o,b}(¬a) = c{d}(¬a) = c{o}(¬a) = c{b}(¬a) = 0: none of these (combina-
tions of) booleans changes in any iteration of the while loop. Finally, note that
c{d}(a) = ∞, because a is labelled L[a].d in the final labelling L.

Appendix B.7.2. Soundness proof
We start this section by some general remarks that we will use throughout the

proofs, sometimes implicitly.

78

First, note that PREPROCESS makes sure that all literals or rules have a true
u-boolean, see the next remark. The reason for this is that all literals and rules ini-
tially get a true u label in line 3, 4 or 6, and there is no operation in PREPROCESS

that turns these booleans to False.

Remark 2 (Each u-boolean is True after PREPROCESS). Given an argumentation
theory AT = (AS,K) where AS = (L,R,) and Q is a set of queryables, let Lp

be the labelling obtained by PREPROCESS (Algorithm 1) on L, R, , Q and K.
For each literal or rule in x ∈ L ∪R the u-boolean in Lp[x] is True.

Second, note that there is no operation before the first iteration of the while
loop in STABILITY-LABEL that changes the labels of rules, so these labels remain
unaffected. From the previous remark and Remark 1, it directly follows that for
each rule, its u-label before the first iteration of the while loop is True.

Remark 3 (Each u boolean for rules is True before STABILITY-LABEL line 7).
Given an argumentation theory AT = (AS,K) where AS = (L,R,) and Q is
a set of queryables, let L be the labelling obtained by STABILITY-LABEL (Algo-
rithm 4) on L, R, , Q and K. For each r ∈ R : L0[r].u is True.

These remarks will be used to specify implications of a given labelling for
(arguments in) future argumentation theories. For starters, an implication of the
labelling ¬L[r].u to a given rule r implies that there is an argument for that rule
in the current argumentation theory.

Lemma 8 (Argument existence labelling). Given an argumentation theory AT =
(AS,K) where AS = (L,R,) and Q is a set of queryables, let L be the labelling
obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and K. For each
r ∈ R: if r is labelled ¬L[r].u then there is an argument based on r in Arg(AT).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by Algorithm 4 on L,
R, , Q and K. We proceed by induction on c{u}.
Proposition (P (n)): For each rule r ∈ R such that r is labelled ¬L[r].u and
c{u}(r) ≤ n, there is an argument based on r in Arg(AT).
Base case (P (1)): Let r be an arbitrary rule in R such that c{u}(r) ≤ 1. Note that
r cannot be labelled ¬L[r].u by the PREPROCESS algorithm (see Remark 2). So
this must have happened in the first iteration of the while loop (c{u}(r) = 1) by
Algorithm 4 (STABILITY-LABEL) line 9, in which Algorithm 3 is applied. Then
the fact that r is labelled ¬L[r].u can only be caused by case R-U-a, so for each

79

a ∈ ants(r) : ¬L[a].u and c{u}(a) = 0. Then each a ∈ ants(r) must have been
labelled ¬L[a].u in Algorithm 4 line 5, by Algorithm 2. Case L-U-b does not
apply (see Remark 3), so by case L-U-a, each a ∈ ants(r) is in K. Then there
is an argument in Arg(AT) for each a ∈ ants(r); therefore, there is an argument
based on r in Arg(AT).
Induction hypothesis (P (k)): For each rule r ∈ R such that c{u}(r) ≤ k, there
is an argument based on r in Arg(AT).
Induction step (P (k+1)): Now let r be an arbitrary rule in R such that c{u}(r) =
k+1. Then r must have been relabelled to ¬L[r].u by Algorithm 4 line 9, by case
R-U-a: for each a ∈ ants(r) : ¬L[a].u and c{u} ≤ k. Consider an arbitrary
antecedent a ∈ ants(r). Given that ¬L[a].u, either a ∈ K (case L-U-a) or for
each r′ for a: r′ is labelled ¬L[r′].u in or before the k’th iteration of the while
loop (case L-U-b). If a ∈ K, then there is an observation-based argument for a in
Arg(AT). Otherwise, by the induction hypothesis, there is an argument based on
r′, for a, in Arg(AT). Because we picked a arbitrarily, for each a ∈ ants(r), there
is an argument for a in Arg(AT). And hence, there is an argument based on r in
Arg(AT).

At this point, we have proven P (n) for all natural numbers n ∈ N. Since
Algorithm 4 has a polynomial runtime (Proposition 4) in terms of finite L and
R, each r ∈ R such that ¬L[r].u must have some non-negative i < n such that
c{u}(r) ≤ i – hence there is an argument based on r in Arg(AT).

The following lemma guarantees that no literal or rule is labelled ⟨0, 0, 0, 0⟩ by
STABILITY-LABEL. This is an important property that we will use in many proofs
related to soundness and conditional completeness, because it enables us to make
statements like: “given that some rule r for l is labelled ¬L[r].u and ¬L[r].o, it is
impossible that each rule r for l is labelled ¬L[r].d and ¬L[r].b”.

Lemma 9 (No 4x False label). Let AT = (AS,K) be an argumentation theory
where AS = (L,R,), let Q be a set of queryables and let L be the labelling
obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and K. For each
x ∈ L ∪R: L[x] ̸= ⟨0, 0, 0, 0⟩.
Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,)
and let Q be a set of queryables. Let L be the labelling obtained by STABILITY-
LABEL (Algorithm 4) on L, R, , Q and K. We proceed by induction on the
interim labelling of literals and rules.
Proposition (P (n)): For each x ∈ L∪R and for each non-negative integer i < n:
Li[l] ̸= ⟨0, 0, 0, 0⟩.

80

Base case (P (1)): We make a distinction between rules and literals.

• Let r ∈ R be an arbitrary rule. There are two options: Lp[r] = ⟨1, 0, 0, 0⟩
or Lp[r] = ⟨1, 1, 1, 1⟩.

– First suppose that Lp[r] = ⟨1, 0, 0, 0⟩. This implies that there is an
antecedent a ∈ ants(r) such that Lp[a] = ⟨1, 0, 0, 0⟩: otherwise, the
Lp label of r would have been changed to ⟨1, 1, 1, 1⟩ by Algorithm 1
line 12. So by Lemma 2, there is an antecedent a ∈ ants(r) such that
for each AT′ ∈ FQ(AT): a is unsatisfiable in AT′. Consequently, there
is no argument for a in Arg(AT), so there is no argument based on r
in Arg(AT). Then, by Lemma 8, r is not labelled ¬L[r].u and hence
L0[r] ̸= ⟨0,0,0,0⟩.

– Alternatively, suppose that Lp[r] = ⟨1, 1, 1, 1⟩. Then, by Remark 1,
L0[r] = Lp[r] = ⟨1, 1, 1, 1⟩, which means that L0[r] ̸= ⟨0,0,0,0⟩.

Recall that we picked r as an arbitrary rule in R. Therefore, for each r ∈
R: L0[r] ̸= ⟨0,0,0,0⟩.

• Now suppose that l is an arbitrary literal. Again, we consider both Lp[l] =
⟨1, 0, 0, 0⟩ and Lp[l] = ⟨1, 1, 1, 1⟩.

– First suppose that Lp[l] = ⟨1, 0, 0, 0⟩. Then l /∈ K: if l ∈ K, there
would be an argument for l in Arg(AT), which would imply that l is not
stable-unsatisfiable in AT (Definitions 10 and 11), a contradiction to
the soundness of PREPROCESS (Lemma 2). Suppose, towards a con-
tradiction, that L0 = ⟨0, 0, 0, 0⟩. By Algorithm 2 case L-U-b, there is
a rule r for l that is labelled ¬L[r].u before the start of the while loop.
This however contradicts Remark 3. Therefore, L0[l] ̸= ⟨0,0,0,0⟩.

– Alternatively, Lp[l] = ⟨1, 1, 1, 1⟩. We consider two cases.

* First assume that l ∈ Q and for each l′ ∈ l : l′ /∈ K. This implies
that l is considered for relabelling in Algorithm 4 line 5. In this
relabelling step, none of the labelling rules L-D-a, L-D-b or L-D-
c from Algorithm 2 applies, so l is labelled L[l].d. This means
that L0[l] ̸= ⟨0,0,0,0⟩.

* Alternatively, either l /∈ Q or there is an l′ ∈ l such that l′ ∈ K.
In both cases, the fact that Lp[l] = ⟨1, 1, 1, 1⟩ must have been
caused by the fact that there is a rule r for l such that Lp[r] =

81

⟨1, 1, 1, 1⟩ (Algorithm 4 line 9). Rules are not relabelled before
the first iteration of the while loop (Remark 1), hence there is a
rule r for l such that L0[r] = Lp[r] = ⟨1, 1, 1, 1⟩. As a result,
neither L-U-a nor L-U-b from Algorithm 2 applies; therefore l is
labelled L[l].u. So L0[l] ̸= ⟨0,0,0,0⟩.

Since we chose l arbitrarily from L, we conclude: for each l ∈ L: L0[l] ̸=
⟨0,0,0,0⟩.

Induction hypothesis (P (k)): For each x ∈ L ∪ R and for each non-negative
integer i < k: Li ̸= ⟨0, 0, 0, 0⟩.
Induction step (P (k + 1)): We will show that for each x ∈ L ∪ R: Lk[x] ̸=
⟨0, 0, 0, 0⟩.

• Let r ∈ R be an arbitrary rule. Suppose, towards a contradiction, that
Lk[r] = ⟨0, 0, 0, 0⟩. Then ¬L[r].d, which must be caused by Algorithm 3
case R-D-a, so there is an antecedent a ∈ ants(r) that is labelled ¬L[a].d.
Furthermore, ¬L[r].b can be caused by either R-B-a or R-B-b, but in both
cases, there is an antecedent a ∈ ants(r) such that ¬L[a].d and ¬L[a].b.
Since ¬L[r].o must be caused by R-O-a, there is an antecedent a ∈ ants(r)
such that ¬L[a].d and ¬L[a].o and ¬L[a].b. Finally, ¬L[r].u implies that
¬L[a].u for each antecedent a of r. But then there is an antecedent a ∈
ants(r) such that Lk−1[a] = ⟨0, 0, 0, 0⟩. This contradicts the induction
hypothesis, there is no rule r ∈ R such that Lk[r] = ⟨0,0,0,0⟩.

• Now let l ∈ L be an arbitrary literal. Suppose, towards a contradiction, that
Lk[l] = ⟨0, 0, 0, 0⟩.
First we show that l /∈ Q: suppose that l ∈ Q. This implies that ¬L[l].d
must have been caused by Algorithm 2 case L-D-a, hence there is an l′ ∈ l
that is in K, which by consistency of K implies that l /∈ K, so ¬L[l].u must
have been caused by L-U-b. Furthermore, there is some l′ ∈ l such that
no l′′ ∈ l′ is in K, so ¬L[l].o must have been caused by L-O-f. But that
implies that there exists a rule r for l such that Lk[r] = ⟨0, 0, 0, 0⟩, which
contradicts our earlier conclusion that such a rule does not exist. Therefore
l /∈ Q.

Given that l /∈ Q, ¬L[l].u must have been caused by case L-U-b. Then
the fact that l is labelled ¬L[l].o must be caused by either L-O-d or L-O-
e; in both cases, there is a rule r for l with ¬L[r].u and ¬L[r].o. Since

82

there is no rule labelled ⟨0, 0, 0, 0⟩ by Lk, ¬L[l].b must have been caused
by L-B-c or L-B-d. In both cases, there is a rule r for l with ¬L[r].u,
¬L[r].o and ¬L[r].b and for each l′ ∈ l: for each rule r′ for l′: ¬L[r′].d
and ¬L[r′].b. Finally, ¬L[l].d can be caused by either L-D-b or L-D-c.
However, both cases contradict our earlier conclusion that there is no rule
labelled ⟨0, 0, 0, 0⟩ by Lk. So for each l ∈ L: Lk[l] ̸= ⟨0,0,0,0⟩.

At this point we have proven our proposition P (n) for all natural numbers
n ∈ N: for each x ∈ L ∪ R and for each non-negative integer i < n: Li[x] ̸=
⟨0, 0, 0, 0⟩. Given that Algorithm 4 terminates (see Proposition 4), there is some
finite i such that Li[x] = L[x] for all x ∈ L∪R. Therefore for each x ∈ L∪R:
L[x] ̸= ⟨0,0,0,0⟩.

The next lemma shows that any argument in the current argumentation theory
is retained in each future argumentation theory. We will repeatedly use this lemma
in our soundness proofs.

Lemma 10 (Argument persistence in future argumentation theories). Let AT =
(AS,K) be an argumentation theory with argumentation system AS = (L,R,)
and let A be an argument in Arg(AT). Then for each set of queryables Q, for each
AT′ ∈ FQ(AT): A ∈ Arg(AT′).

Proof. Suppose that AT = (AS,K) is an argumentation theory where AS =
(L,R,) and let Q be a set of queryables. Let AT′ = (AS,K′) be an arbitrary
future argumentation theory in FQ(AT). By Definition 10 of future argumentation
theories, K ⊆ K′. From the definition of arguments (Definition 4), it follows that
arguments are constructed only based on their knowledge base and rule set, so
given that A can be constructed from K and R, A can also be constructed from K′

and R. This implies that A ∈ Arg(AT′). Since AT′ is an arbitrary argumentation
theory in FQ(AT), this generalises to all future argumentation theories: for each
AT′ ∈ FQ(AT): A ∈ Arg(AT′).

Next, we discuss the situations in which the booleans representing the stable-
unsatisfiable, stable-defended, stable-out and stable-blocked statuses for rules are
turned to False. Due to the way the labelling rules are defined, there are many
situations in which either the u- and o-boolean or the d- and b-boolean are turned
False together. Lemma 11 analyses the situation that both the unsatisfiable and
the out boolean for a rule are turned to False. In this situation, there must be some
argument based on that rule in each future argumentation theory AT′ that is not

83

attacked on a subargument by an argument in the grounded extension G(AT′). In
the next definition, we formally define attacks on a subargument and their coun-
terpart: attacks on a conclusion.

Definition 21 (Attack on conclusion or on a subargument). Let AT = (AS,K)
be an argumentation theory where AS = (L,R,) and let A and B be two argu-
ments in Arg(AT). If A attacks B on B, we say that A attacks B on its conclusion;
otherwise (A attacks B on B′ and B′ ̸= B), we say that A attacks B on a subar-
gument.

Using Definition 21 we can now prove Lemma 11:

Lemma 11 (Labelled not unsatisfiable or out). Let AT = (AS,K) be an argumen-
tation theory where AS = (L,R,) and Q is a set of queryables; furthermore
let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, ,
Q and K. For each r ∈ R: if r is labelled ¬L[r].u and ¬L[r].o, then for each
AT′ ∈ FQ(AT), there is an argument based on r in Arg(AT′) that is not attacked
on a subargument by any argument in G(AT′).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We proceed by induction on c{u,o}.
Proposition (P (n)): For each rule r ∈ R such that c{u,o}(r) ≤ n: if r is labelled
¬L[r].u and ¬L[r].o, then for each AT′ ∈ FQ(AT), there is an argument based on
r in Arg(AT′) that is not attacked on a subargument by any argument in G(AT′).
Base case (P (1)): Let r be an arbitrary rule in R such that c{u,o}(r) ≤ 1 and
¬L[r].u and ¬L[r].o. Since ¬L[r].u can neither be assigned by PREPROCESS

nor before the first iteration of the while loop (Remark 3), c{u,o}(r) = 1. Then
¬L[r].u and ¬L[r].o must have been caused by Algorithm 3 case R-U-a and R-O-
a: each a ∈ ants(r) is labelled ¬L[a].u and ¬L[a].o and c{u,o}(a) = 0. Then each
a ∈ ants(r) is in K: the ¬L[a].u label before the first iteration of the while loop
cannot be caused by Algorithm 2 case L-U-b (see Remark 3), and must hence have
been caused by case L-U-a. Consequently, there is an observation-based argument
for each of r’s antecedents, hence there is an argument A based on r in Arg(AT).
Then, by Definition 5 and Lemma 10, for each AT′ ∈ FQ(AT), A is not attacked
on a subargument by any argument in G(AT′).
Induction hypothesis (P (k)): For each r ∈ R such that c{u,o}(r) ≤ k: if r is
labelled ¬L[r].u and ¬L[r].o, then for each AT′ ∈ FQ(AT), there is an argument

84

based on r in Arg(AT′) that is not attacked on a subargument by any argument in
G(AT′).
Induction step (P (k+1)): Now let r be an arbitrary rule in R such that c{u,o}(r) ≤
k + 1 and ¬L[r].u and ¬L[r].o. By Algorithm 3 case R-U-a and R-O-a, for each
a ∈ ants(r): ¬L[a].u, ¬L[a].o and c{u,o}(a) ≤ k. Now let a be an arbitrary
antecedent in ants(r). We consider two cases:

• If a ∈ K, then for each AT′ ∈ FQ(AT) there is an observation-based argu-
ment for a in Arg(AT′) that, by Lemma 7, is not attacked by any argument
in G(AT′).

• Alternatively, a /∈ K. Then the label ¬L[a].u must have been labelled by
case L-U-b. This implies that the label ¬L[a].o must have been by case
L-O-b, L-O-c, L-O-d or L-O-e. In any case: (1) there is a rule r′ for a that
is labelled ¬L[r′].u and ¬L[r′].o and (2) if a ∈ Q then for each a′ ∈ a
there is some a′′ ∈ a that is in K. Given that c{u,o}(a) ≤ k, it follows that
c{u,o}(r

′) ≤ k. So by the induction hypothesis and (1): for each AT′ ∈
FQ(AT), there is an argument for a (based on r′) in Arg(AT′) that is not
attacked on a subargument by an argument in G(AT′). Furthermore, by (2)
there is no AT′ ∈ FQ(AT) such that there is an observation-based argument
for any a′ ∈ a in Arg(AT′), so by Lemma 7 no argument for a in Arg(AT′)
for any AT′ ∈ FQ(AT) can be attacked on its conclusion by an argument in
G(AT′).

Given that for each AT′ ∈ FQ(AT), for each a ∈ ants(r), there is an argument
for a in Arg(AT′) that is not attacked by any argument in G(AT′), we can construct
an argument based on r in Arg(AT′) that is not attacked on a subargument by any
argument in G(AT′).
Finally, recall that c{u,o}(r) is finite for each r ∈ R that is labelled ¬L[r].u and
¬L[r].o (Definition 20), which means that the proposition is valid for each r ∈ R
in general.

Lemma 12 analyses the situation that a rule r ∈ R for l is labelled ¬L[r].d and
¬L[r].b and shows that l cannot be defended or blocked in any future argumen-
tation theory of AT thanks to that rule, that is: there is no future argumentation
theory AT′ in which there is an argument based on r that is not attacked by an
argument G(AT).

85

Lemma 12 (Labelled not defended or blocked). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,) and let Q be a set of queryables. Let
L be the labelling obtained by STABILITY-LABEL (Algorithm 4) and Lp be the
labelling obtained by PREPROCESS (Algorithm 1) on L, R, , Q and K. If r ∈ R
such that Lp[r] = ⟨1, 1, 1, 1⟩ and r is labelled ¬L[r].d and ¬L[r].b, then for each
AT′ ∈ FQ(AT), any argument based on r is attacked by an argument in G(AT′).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) and Lp be the labelling obtained by PREPROCESS (Algorithm 1) on
L, R, , Q and K. We proceed by induction on c{d,b}.
Proposition (P (n)): For each r ∈ R such that c{d,b}(r) ≤ n: if Lp[r] = ⟨1, 1, 1, 1⟩
and r is labelled ¬L[r].d and ¬L[r].b, then for each AT′ ∈ FQ(AT), each argument
based on r in Arg(AT′) is attacked by an argument in G(AT′).
Base case (P (1)): Let r be an arbitrary rule such that c{d,b}(r) ≤ 1 and Lp[r] =
⟨1, 1, 1, 1⟩ and suppose that r is labelled ¬L[r].d and ¬L[r].b. Since Lp[r] =
⟨1, 1, 1, 1⟩, r must be labelled ¬L[r].d and ¬L[r].b by Algorithm 4 and by Re-
mark 1 c{d,b}(r) = 1.

The labelling of r as ¬L[r].d and ¬L[r].b must have happened in line 9, caused
by Algorithm 3. Then by case R-D-a and case R-B-a or R-B-b, some a ∈ ants(r)
must have been labelled ¬L[a].d and ¬L[a].b and c{d,b}(a) = 0.

Given that c{d,b}(a) = 0, a must have been relabelled either in the prepro-
cessing step or in Algorithm 4 line 5. However, if a was labelled ¬L[a].d and
¬L[a].b in the preprocessing step, then Lp[a] = ⟨1, 0, 0, 0⟩, which means that
Lp[r] = ⟨1, 0, 0, 0⟩ (since Algorithm 1 line 11 would not have applied for r),
which would contradict our assumption that Lp[r] = ⟨1, 1, 1, 1⟩. So a must have
been labelled ¬L[a].d and ¬L[a].b in Algorithm 4 line 5. Then the condition in
line 4 must have been true: either a ∈ Q or there is no rule for a in R.

Next, we show by contradiction that a ∈ Q: suppose that a /∈ Q. Then
by the condition in Algorithm 4 line 4, there is no rule for a in R. But in that
case, a would have been labelled as Lp[a] = ⟨1, 0, 0, 0⟩ in the preprocessing step
(line 4) and never relabelled to ⟨1, 1, 1, 1⟩ because the condition of line 7 would
never apply (given that there is no rule for a in R). This contradicts our earlier
conclusion that Lp[a] = ⟨1, 1, 1, 1⟩. Therefore, a ∈ Q.

Given that a ∈ Q and a is relabelled in Algorithm 4 line 5, by case L-D-a, there
is some a′ ∈ a such that a′ ∈ K. Then there is an observation-based argument for
a′ in Arg(AT) – and by Lemma 10, for each AT′ ∈ FQ(AT): a′ ∈ Arg(AT′). So by

86

Lemma 7, for each AT′ ∈ FQ(AT), each argument for a in Arg(AT′) is attacked by
an argument in G(AT′).

Given that a is an antecedent of r, we can derive that for each AT′ in FQ(AT),
each argument based on r in Arg(AT′) is attacked by an argument in G(AT′).
Since we chose r as an arbitrary rule in R such that c{d,b}(r) ≤ 1, we can gener-
alise this to all rules that are labelled ⟨1, 1, 1, 1⟩ by Lp.
Induction hypothesis (P (k)): For each r ∈ R such that c{d,b}(r) ≤ k, if Lp[r] =
⟨1, 1, 1, 1⟩ and r is labelled ¬L[r].d and ¬L[r].b then for each AT′ ∈ FQ(AT), each
argument based on r ∈ Arg(AT′) is attacked by an argument in G(AT′).
Induction step (P (k + 1)): Let r be an arbitrary rule in R such that c{d,b}(r) =
k + 1 and assume that Lp[r] = ⟨1, 1, 1, 1⟩ and r is labelled ¬L[r].d and ¬L[r].b.
By Algorithm 3 case R-D-a and either R-B-a or R-B-b, there is an antecedent a
of r that is labelled ¬L[a].d and ¬L[a].b and c{d,b}(a) ≤ k. We distinguish two
cases: a ∈ Q and a /∈ Q.

• If a ∈ Q, then by case L-D-a there is some a′ ∈ a such that a′ ∈ K. So
there is an observation-based argument A for a′ that is in Arg(AT′) for every
AT′ ∈ FQ(AT). Being observation-based, A cannot be attacked and there-
fore A ∈ G(AT′) for every AT′ ∈ FQ(AT). So for each AT′ ∈ FQ(AT):
each argument for a in Arg(AT′) is attacked by an argument in G(AT′).

• Now suppose that a /∈ Q. Then by the labelling rules of Algorithm 3, each
rule r′ for a is labelled ¬L[r′].d and ¬L[r′].b and c{d,b}(r

′) ≤ k: if
L-D-c caused ¬L[a].d, then by Lemma 9, a must have been labelled ¬L[a].b
by case L-B-b; if, alternatively, L-D-b caused ¬L[a].d, then either L-B-b or
L-B-c caused ¬L[a].b.
Consider an arbitrary rule r′ for a. Either Lp[r

′] = ⟨1, 0, 0, 0⟩ or Lp[r
′] =

⟨1, 1, 1, 1⟩. If Lp[r
′] = ⟨1, 0, 0, 0⟩, some a′ ∈ ants(r′) is labelled Lp[a

′] =
⟨1, 0, 0, 0⟩, so by Lemma 2 there is no argument based on r′ in any Arg(AT′)
where AT′ ∈ FQ(AT′). If, alternatively, Lp[r

′] = ⟨1, 1, 1, 1⟩ (which must be
the case for at least one rule for a, since Lp[a] = ⟨1, 1, 1, 1⟩), we apply the
induction hypothesis: for each AT′ ∈ FQ(AT): each argument based on r′

in Arg(AT′) is attacked by an argument in G(AT′). Since a /∈ Q, there are
no observation-based arguments for a either, so: for each AT′ ∈ FQ(AT),
each argument for a in Arg(AT′) is attacked by an argument in G(AT′).

By generalising r, we can now derive that for each rule r ∈ R such that
c{d,b} ≤ k + 1: if r is labelled ¬L[r].d and ¬L[r].b, then for each AT′ ∈ FQ(AT),

87

each argument based on r in Arg(AT′) is attacked by an argument in G(AT′).
Finally, remember that for each rule r ∈ R that is labelled ¬L[r].d and ¬L[r].b,
c{d,b}(r) is finite (Definition 20), which means that the proposition is valid for
each r ∈ R in general.

In the next lemma, we show that no literal l ∈ L can be labelled L[l] =
⟨1, 0, 0, 0⟩ after the preprocessing step, that is: if Lp[l] ̸= ⟨1, 0, 0, 0⟩. We will use
this lemma for proving soundness of stable-unsatisfiable labelling.

Lemma 13 (Stable-unsatisfiable labelling only in preprocessing). Let AT = (AS,K)
be an argumentation theory where AS = (L,R,), let Q be a set of queryable
literals and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4)
and Lp the labelling obtained by PREPROCESS (Algorithm 1) on L, R, , Q and
K. For each literal l ∈ L: if L[l] = ⟨1, 0, 0, 0⟩ then Lp[l] = ⟨1, 0, 0, 0⟩.
Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We will, towards a proof by contraposition,
first show that for each l ∈ L such that Lp[l] ̸= ⟨1, 0, 0, 0⟩ it must be that L[l] ̸=
⟨1, 0, 0, 0⟩. We prove this by induction on the interim labelling of literals.
Proposition P (n): For each l ∈ L: if Lp[l] = ⟨1, 1, 1, 1⟩ then for each non-
negative integer i < n: Li[l] ̸= ⟨1, 0, 0, 0⟩.
Base case (P (1)): Let l ∈ L be an arbitrary literal such that Lp[l] = ⟨1, 1, 1, 1⟩
and suppose that L0[l] = ⟨1, 0, 0, 0⟩.

Then l must have been relabelled by Algorithm 4 line 5, using Algorithm 2.
Given that l is labelled ¬L[l].d, either l /∈ Q or there is some l′ ∈ l such that
l′ ∈ K. Therefore, Lp[l] = ⟨1, 1, 1, 1⟩ cannot be caused by Algorithm 1 line 3
and hence must be caused by Algorithm 1 line 13. This means that Algorithm 1
line 12 must have been executed as well, so there is some rule r for l such that
Lp[r] = ⟨1, 1, 1, 1⟩. Then by Remark 1 there is some rule r for l such that
L0[r] = ⟨1,1,1,1⟩.

Furthermore, given that l is relabelled by Algorithm 4 line 5, the condition in
Algorithm 4 line 4 must have applied, which implies that l ∈ Q. Consequently,
there is an l′ ∈ l such that l′ ∈ K. But then no labelling rule in Algorithm 2 derives
¬L[l].o. This contradicts our assumption that L0[l] = ⟨1, 0, 0, 0⟩. Therefore,
for each l ∈ L such that Lp[l] = ⟨1,1,1,1⟩, for each non-negative integer
i < 1: Li[l] ̸= ⟨1,0,0,0⟩.
Induction hypothesis (P (k)): For each l ∈ L: if Lp[l] = ⟨1, 1, 1, 1⟩ then for each
non-negative integer i < k: Li[l] ̸= ⟨1, 0, 0, 0⟩.

88

Induction step (P (k+1)): Let l be an arbitrary literal such that Lp[l] = ⟨1, 1, 1, 1⟩.
Suppose, towards a contradiction, that Lk[l] = ⟨1, 0, 0, 0⟩. Then each rule r for l
is labelled Li[r] = ⟨1, 0, 0, 0⟩, as we will show next.

• First suppose that l ∈ Q. Then there is some l′ ∈ l such that l′ ∈ K by case
L-D-a, so l /∈ K. Then case L-O-f must have applied, so each rule r for l
is labelled Lk[r] = ⟨1,0,0,0⟩.

• Alternatively, suppose that l /∈ Q. We next show by contradiction that each
rule r for l is labelled ¬L[r].d: suppose that there is some rule r for l that
is labelled L[r].d. Then the fact that l is labelled ¬L[l].d must have been
caused by case L-D-c and, by Lemma 9, ¬L[l].b must be caused by case L-
B-b: each rule r for l is labelled ¬L[r].d and ¬L[r].b. But that contradicts
our assumption, so each rule r for l is labelled ¬L[r].d.

Given that each rule r for l is labelled ¬L[r].d, the fact that l is labelled
¬L[l].b must be caused by case L-B-b or L-B-c; as a result, the fact that l is
labelled ¬L[l].o must be caused by case L-O-f or L-O-d. In both cases, by
Lemma 9, each rule r for l is labelled Lk[r] = ⟨1,0,0,0⟩.

Now let r be an arbitrary rule for l; we know that Lk[r] = ⟨1, 0, 0, 0⟩. The
fact that r is labelled ¬L[r].d, ¬L[r].o and ¬L[r].b must have been caused by
Algorithm 3 case R-D-a, case R-B-a or R-B-b and case R-O-a: there is some
a ∈ ants(r) that is labelled ¬L[a].d and ¬L[a].o and ¬L[a].b. Note that a must
have been labelled as such before the (k − 1)’th iteration of the while loop. By
Lemma 9, Lk−1[a] = ⟨1, 0, 0, 0⟩.

But then by the induction hypothesis, a was already labelled stable-unsatisfiable
by Lp. Given that Lp[a] = ⟨1, 0, 0, 0⟩, the condition in Algorithm 1 line 11 would
not have applied for r, so r would have been labelled Lp[r] = ⟨1, 0, 0, 0⟩. Since
we chose r arbitrary, we know that Lp[r] = ⟨1, 0, 0, 0⟩ for each rule r for l.
But that implies that l is labelled stable-unsatisfiable in Algorithm 1 line 4 and
is not re-labelled to ⟨1, 1, 1, 1⟩ in Algorithm 1 line 13. So Lp[l] = ⟨1, 0, 0, 0⟩.
This contradicts our assumption that Lp[l] = ⟨1, 1, 1, 1⟩. Hence for each l ∈ L
such that Lp[l] = ⟨1,1,1,1⟩, for each non-negative integer i < k + 1:
Li[l] ̸= ⟨1,0,0,0⟩.

At this point, we have proven P (i) for each finite non-negative i < n and for
each l ∈ L. Since Algorithm 4 has a polynomial runtime (Proposition 4), there
must be some finite non-negative i < n such that for each l ∈ L: L[l] = Li[l]. By
contraposition, this implies for each l ∈ L: if L[l] = ⟨1,0,0,0⟩ then Lp[l] ̸=
⟨1, 1, 1, 1⟩ and therefore Lp[l] = ⟨1,0,0,0⟩.

89

Having shown that literals can only be labelled as unsatisfiable in the pre-
pocessing step, it is a small step to prove that STABILITY-LABEL is sound for the
stable-unsatisfiable cases.

Lemma 14 (Soundness stable-unsatisfiable labelling). Let AT = (AS,K) be an
argumentation theory where AS = (L,R,), let Q be the set of queryable literals
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R,

, Q and K. For each l ∈ L: if L[l] = ⟨1, 0, 0, 0⟩ then l is stable-unsatisfiable in
AT w.r.t. Q.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

on L, R, , Q and K. Each literal l ∈ L that is labelled L[l] = ⟨1, 0, 0, 0⟩ was
already labelled Lp[l] = ⟨1, 0, 0, 0⟩ by Lemma 13, which by Lemma 2 implies that
l is stable-unsatisfiable in AT w.r.t. Q.

Next, we show that STABILITY-LABEL is sound for literals that are labelled
stable-defended.

Lemma 15 (Soundness stable-defended labelling). Let AT = (AS,K) be an ar-
gumentation theory where AS = (L,R,), let Q be the set of queryable literals
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R,

, Q and K. For each literal l ∈ L: if L[l] = ⟨0, 1, 0, 0⟩ then l is stable-defended
in AT w.r.t. Q.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We proceed by induction on c{u,o,b}(l).
Proposition (P (n)): For each l ∈ L such that c{u,o,b}(l) ≤ n: if L[l] = ⟨0, 1, 0, 0⟩
then l is stable-defended in AT w.r.t. Q.
Base case (P (0)): Let l be an arbitrary literal in L such that c{u,o,b}(l) ≤ 0 and
suppose that L[l] = ⟨0, 1, 0, 0⟩. Note that L[l].d implies that Lp[l] = ⟨1, 1, 1, 1⟩.
It follows that l must have been relabelled to ⟨0, 1, 0, 0⟩ by Algorithm 4 line 5. At
that moment, all rules r ∈ R are labelled L[r].u (Remark 3) hence the ¬L[l].u
label cannot be caused by Algorithm 2 L-U-b. So case L-U-a must have applied:
l ∈ K. Then there is an observation-based argument for l in each AT′ ∈ FQ(AT)
(Definition 10) that cannot be attacked and therefore is in the grounded extension.
Consequently, l is stable-defended in AT w.r.t. Q.
Induction hypothesis (P (k)): For each l ∈ L such that c{u,o,b}(l) ≤ k: if L[l] =
⟨0, 1, 0, 0⟩ then l is stable-defended in AT w.r.t. Q.

90

Induction step (P (k + 1)): Now consider an arbitrary literal l ∈ L such that
c{u,o,b}(l) = k + 1 and suppose that L[l] = ⟨0, 1, 0, 0⟩.

First suppose towards a contradiction that l ∈ Q. Note that l ∈ K, since
otherwise there would be a rule r for l with ¬L[r].u (L-U-b) and for each rule r for
l: ¬L[r].d, ¬L[r].o and ¬L[r].b (L-O-f), a contradiction with Lemma 9. However,
this means that l would be labelled stable-defended before the start of the while
loop, which contradicts our assumption that c{u,o,b}(l) = k + 1 for positive k.
Consequently, l /∈ Q.

Given that l /∈ Q, the label ¬L[l].u must have been caused by Algorithm 2
case L-U-b. Then ¬L[l].o must have been caused by either L-O-d or L-O-e and
¬L[l].b must have been caused by either L-B-c or L-B-d (L-B-a contradicts l /∈ Q;
L-B-b contradicts Lemma 9). It follows that there is a rule r for l with ¬L[r].u,
¬L[r].o and ¬L[r].b and for each l′ ∈ l, for each rule r′ for l′: ¬L[r′].d
and ¬L[r′].b. Consider both conclusions:

• Let r be the rule for l such that ¬L[r].u, ¬L[r].o and ¬L[r].b. The fact that
r is labelled ¬L[r].u must have been caused by R-U-a; then ¬L[r].o has to
be caused by R-O-a and ¬L[r].b must have been caused by R-B-a, so each
antecedent a of r is labelled ¬L[a].u, ¬L[a].o and ¬L[a].b. By Lemma 9,
the d-boolean must have been positive: for each a ∈ ants(r) : Lk[a] =
⟨0, 1, 0, 0⟩. Then by the induction hypothesis, each antecedent a ∈ ants(r)
is stable-defended in AT w.r.t. Q. So by Definition 11, for each a ∈ ants(r),
for each AT′ in FQ(AT), there is an argument for a in G(AT′). By Lemma 6,
each argument attacking this argument is attacked by an observation-based
argument (which is unattacked and therefore in the grounded extension).
To conclude, for each AT′ ∈ FQ(AT), there is an argument A based on r in
Arg(AT′) such that each argument B attacking A on a subargument in AT′

is attacked by an observation-based argument in G(AT′).

• Now consider that each rule r′ for some l′ ∈ l is labelled ¬L[r′].d and
¬L[r′].b. By Lemma 12, this implies that for each AT′ ∈ FQ(AT), for each
l′ ∈ l, for each rule r′ for l′, each argument based on r in Arg(AT′) is
attacked by an argument in G(AT′). Thus for each AT′ ∈ FQ(AT), each
argument attacking an argument for l on its conclusion in AT′ is attacked by
an argument in the grounded extension Arg(AT′).

To summarize, for each AT′ ∈ FQ(AT), there is some argument A (based on
r, for l) in Arg(AT′) such that each argument B in Arg(AT′) attacking A (either on

91

a subargument or on its conclusion l) is attacked by an argument in the grounded
extension Arg(AT). Then by Definitions 7, 8 and 11, l is stable-defended in AT
w.r.t. Q. Since we chose l arbitrarily, this concludes the induction step.

At this point, we have shown that for each n ∈ N: for each l ∈ L: if
c{u,o,b}(l) ≤ n and L[l] = ⟨0, 1, 0, 0⟩ then l is stable-defended in AT w.r.t. Q.
Given that for each l ∈ L such that L[l] = ⟨0, 1, 0, 0⟩, c{u,o,b}(l) is finite (Defi-
nition 20), we derive: for each l ∈ L: if L[l] = ⟨0,1,0,0⟩ then l is stable-
defended in AT w.r.t. Q.

We continue with showing soundness for literals that are labelled stable-out
by STABILITY-LABEL.

Lemma 16 (Soundness stable-out labelling). Let AT = (AS,K) be an argumenta-
tion theory where AS = (L,R,), let Q be the set of queryable literals and let L
be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and
K. For each l ∈ L: if L[l] = ⟨0, 0, 1, 0⟩ then l is stable-out in AT w.r.t. Q.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,)
and let Q be a set of queryables. Let L be the labelling obtained by STABILITY-
LABEL (Algorithm 4) on L, R, , Q and K. Suppose that l ∈ L is labelled
L[l] = ⟨0, 0, 1, 0⟩ by STABILITY-LABEL (Algorithm 4). Note that this implies
that Lp[l] = ⟨1,1,1,1⟩, so the fact that l is labelled ¬L[l].u, ¬L[l].d and ¬L[l].b
must have been caused by Algorithm 2. We consider two cases: l ∈ Q and l /∈ Q.

• First suppose that l ∈ Q. Then the fact that l is labelled ¬L[l].d must have
been caused by Algorithm 2 case L-D-a, so there is some l′ ∈ l such that
l′ ∈ K. Knowledge bases are consistent, therefore l /∈ K. This means
that ¬L[l].u cannot be caused by Algorithm 2 case L-U-a, hence must have
been caused by case L-U-b: there is a rule r for l with ¬L[r].u. Then by
Lemma 8, there is an argument for l based on r in Arg(AT). However, since
there is some l′ ∈ l such that l′ ∈ K, each argument for l is attacked by the
observation-based argument for l′. Hence, by Lemmas 10 and 7, for each
AT′ ∈ FQ(AT), l is out in AT′.

• Now suppose that l /∈ Q. Then l /∈ K, so label ¬L[l].u must have been
caused by case L-U-b: there is a rule r for l with ¬L[r].u. Then by Lemma 8,
there is an argument based on r in Arg(AT). Furthermore, since l is labelled
L[l].o, we know that there is no rule r for l with ¬L[r].u and ¬L[r].o (oth-
erwise Algorithm 2 case L-O-e would apply). As a result, L-B-d cannot

92

apply, so the fact that l is labelled ¬L[l].b must be caused by either L-B-b
or L-B-c. In both cases, for each rule r for l: ¬L[r].d and ¬L[r].b. Now,
by Lemma 12: for each AT′ in FQ(AT), each argument for l is attacked by
the grounded extension. Therefore, by Definition 8, l is out in AT′ for each
AT′ in FQ(AT).

To conclude, for each l ∈ L that is labelled L[l] = ⟨0,0,1,0⟩: l is stable-
out in AT w.r.t. Q.

In order to prove soundness for stable-blocked labeled literals, we first need
the following additional lemma: if a literal l is labelled ¬L[l].d by STABILITY-
LABEL, then there is no future argumentation theory such that there is an argument
for l in the grounded extension.

Lemma 17 (Labelled not defended). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,), let Q be the set of queryable literals and let L
be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and
K. For each l ∈ L: if l is labelled ¬L[l].d then there is no argument for l in
G(AT′) for any AT′ in FQ(AT).

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We proceed by induction on c{d}.
Proposition (P (n)): For each l ∈ L such that c{d}(l) ≤ n: if l is labelled ¬L[l].d,
then there is no argument for l in G(AT′) for any AT′ in FQ(AT).
Base case (P (0)): Let l be an arbitrary literal from L such that c{d}(l) ≤ 0. We
consider two cases:

• First suppose that Lp[l] = ⟨1, 0, 0, 0⟩. By Lemma 2, for each AT′ ∈ FQ(AT),
there is no argument for l in Arg(AT′). As a consequence, there is no argu-
ment for l in G(AT′) for any AT′ in FQ(AT).

• Alternatively, suppose that Lp[l] = ⟨1, 1, 1, 1⟩. We will first show that l ∈
Q: suppose that l /∈ Q. We know that l was labelled ¬L[l].d in Algorithm 4
line 5, so the condition in line 4 must have applied. By assumption l /∈ Q,
hence we have that there is no rule for l in R. However, that implies that l
would have been labelled ⟨1, 0, 0, 0⟩ in the preprocessing step (Algorithm 1
line 4), and this label would not change: Algorithm 1 line 13 would not be
executed for l since the condition in line 11 does not apply. A contradiction
with our assumption that Lp[l] = ⟨1, 1, 1, 1⟩. Therefore, l ∈ Q.

93

Given that l ∈ Q, the label ¬L[l].d must be caused by Algorithm 2 case
L-D-a: there is some l′ ∈ l such that l′ ∈ K. This means that there is
an observation-based argument for l′ in Arg(AT) which, by Lemma 10 and
Definitions 5 and 7, is in the grounded extension of every AT′ ∈ FQ(AT).
Therefore there is no argument for l in G(AT′) for any AT′ in FQ(AT).

Induction hypothesis (P (k)): For each l ∈ L such that c{d}(l) ≤ k: if l is labelled
¬L[l].d, then there is no argument for l in G(AT′) for any future argumentation
theory AT′ in FQ(AT).
Induction step: Let l be an arbitrary literal in L such that c{d}(l) = k + 1. First,
we show that l /∈ Q: if l would be in Q, then the label ¬L[l].d must have been
caused by Algorithm 2 case L-D-a: there is an l′ ∈ l such that l′ ∈ K. However,
that would imply that c{d}(l) = 0, which contradicts our assumption that c{d}(l) =
k + 1 for positive k.

Given that l /∈ Q, ¬L[l].d must have been caused by case L-D-b or L-D-c.
Next, we consider these two cases:

• Suppose that each rule r for l is labelled ¬L[r].d (L-D-b is applied). c{d}(l) =
k + 1, so there exists at least one rule for l. We take an arbitrary rule r for
l. Then, by R-D-a, there is an a ∈ ants(r) with ¬L[a].d and c{d}(a) ≤ k.
By the induction hypothesis, for each AT′ ∈ FQ(AT), there is no argument
for a in G(AT′). As a result, for each AT′ ∈ FQ(AT), each argument for a
would be attacked by some argument that is not attacked by any argument
in G(AT′), which implies that each argument based on r would be attacked
by some argument that is not attacked by any argument in G(AT′). Since
we chose r arbitrarily, we know that there is no rule-based argument for l in
G(AT′) for any AT′ in FQ(AT). Furthermore, the fact that l /∈ Q implies that
there is no observation-based argument either, so there is no argument for
l in G(AT′) for any AT′ ∈ FQ(AT).

• Now suppose that there is a rule r for l that is labelled L[r].d (L-D-c is
applied). Then l /∈ Q and there is some l′ ∈ l such that there is a rule r′ for
l′ with ¬L[r′].u and ¬L[r′].o. By Lemma 11, for each future argumentation
theory AT′ in FQ(AT) there exists an argument for l′ based on r′ that is not
attacked by any argument in G(AT′). So for every AT′ ∈ FQ(AT), if an
argument for l exists, then it cannot be in G(AT′).

At this point, we have shown for each non-negative integer n ∈ N: for each
l ∈ L such that c{d}(l) ≤ k: if l is labelled ¬L[l].d, then there is no argument

94

for l in G(AT′) for any AT′ ∈ FQ(AT). Given that for each l ∈ L such that l
is labelled ¬L[l].d: c{d}(l) is finite (Definition 20), we derive: for each l ∈ L
that is labelled ¬L[l].d, then there is no argument for l in G(AT′) for any
AT′ ∈ FQ(AT).

We now use Lemma 17 to prove Lemma 18, which is the soundness proof for
the fourth and final justification status: blocked.

Lemma 18 (Soundness stable-blocked labelling). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,), let Q be the set of queryable literals and
let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, ,
Q and K. For each l ∈ L: if L[l] = ⟨0, 0, 0, 1⟩ then l is stable-blocked in AT w.r.t.
Q.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,)
and let Q be a set of queryables. Let L be the labelling obtained by STABILITY-
LABEL (Algorithm 4) on L, R, , Q and K. Let l ∈ L be an arbitrary literal that is
labelled L[l] = ⟨0, 0, 0, 1⟩ by STABILITY-LABEL (Algorithm 4). Note that L[l].b
implies that Lp[l] = ⟨1, 1, 1, 1⟩, so the fact that l is labelled ¬L[l].u, ¬L[l].d and
¬L[l].o must have been caused by Algorithm 2.

The fact that l is labelled L[l].b, although l is considered for labelling by Al-
gorithm 2, implies that l /∈ Q (case L-B-a did not apply). Then l /∈ K, so la-
bel ¬L[l].u must have been caused by case L-U-b. Then the label ¬L[l].o must
be caused by either L-O-d or L-O-e. In both cases, some rule r for l is labelled
¬L[r].u and ¬L[r].o. By Lemma 11, for each AT′ ∈ FQ(AT), there is an argument
based on r in Arg(AT′) that is not attacked by an argument in G(AT′). Further-
more, the fact that l is labelled ¬L[l].d implies that for every future argumentation
theory AT′ in FQ(AT) there is no argument for l in the grounded extension G(AT′)
(Lemma 17). To conclude, for each AT′ ∈ FQ(AT), l is blocked in AT′ (Defini-
tion 8), so l is stable-blocked in AT w.r.t. Q (Definition 11).

Finally, we combine these lemmas to show that STABILITY-LABEL is sound:
if some literal l is labelled as stable in some argumentation theory AT w.r.t. the set
of queryables Q, then l is stable in AT w.r.t. Q.

Proposition 2 (Soundness stability labelling). Let AT = (AS,K) be an argumen-
tation theory where AS = (L,R,), let Q be the set of queryable literals and
let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, ,
Q and K. If L labels a literal l ∈ L stable-unsatisfiable in AT w.r.t. Q, then l
is stable-unsatisfiable in AT w.r.t. Q; if L labels a literal l ∈ L stable-defended

95

in AT w.r.t. Q, then l is stable-defended in AT w.r.t. Q; if L labels a literal l ∈ L
stable-out in AT w.r.t. Q, then l is stable-out in AT w.r.t. Q; and if L labels a literal
l ∈ L stable-blocked in AT w.r.t. Q, then l is stable-blocked in AT w.r.t. Q.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. Suppose that a literal l ∈ L is labelled stable
by STABILITY-LABEL (Algorithm 4) and let L be the obtained labelling. Then
L[l] = ⟨1, 0, 0, 0⟩, L[l] = ⟨0, 1, 0, 0⟩, L[l] = ⟨0, 0, 1, 0⟩ or L[l] = ⟨0, 0, 0, 1⟩. That
l is stable follows from:

• If L[l] = ⟨1, 0, 0, 0⟩ then l is stable-unsatisfiable in AT w.r.t. Q by Lemma 14.

• If L[l] = ⟨0, 1, 0, 0⟩ then l is stable-defended in AT w.r.t. Q by Lemma 15.

• If L[l] = ⟨0, 0, 1, 0⟩ then l is stable-out in AT w.r.t. Q by Lemma 16.

• If L[l] = ⟨0, 0, 0, 1⟩ then l is stable-blocked in AT w.r.t. Q by Lemma 18.

Appendix B.8. Conditional completeness of the stability labelling algorithm
In this section, we prove Proposition 3, which specifies conditions under which

STABILITY-LABEL is complete. Similar to Section Appendix B.6, we first define
height of potential arguments in Section Appendix B.8.1 before proceeding to the
actual proofs in Section Appendix B.8.2.

Appendix B.8.1. Height of potential arguments
Recall that the completeness cases from Proposition 3 are defined in terms of

potential arguments (Definition 13). In order to prove this proposition by induc-
tion, we need the notion of height of potential arguments. Similar to the height of
arguments, the height of a potential argument is the maximum number of infer-
ences between a premise and the conclusion of the potential argument.

Definition 22 (Height of potential arguments). Let AT = (AS,K) be an argu-
mentation theory and let Ap ∈ PQ(AT) be an argument. The height h(Ap) of Ap

is:

• if Ap is an observation-based potential argument then h(Ap) = 0;

• if A is a rule-based argument of the form A1, . . . , Am ⇒ c, then h(A) =
1 + max(h(A1), . . . , h(Am)).

96

Note that Definition 13 on potential arguments enforces that all potential ar-
guments have finite height, since the number of steps for constructing a potential
argument is finite.

Appendix B.8.2. Conditional completeness proof
In this section, we prove Proposition 3, which specifies conditions under which

STABILITY-LABEL is complete. In order to prove this, we first need Lemma 3
(see Section 4.2.3 in the paper), which consists of six items and shows in which
situations STABILITY-LABEL turns one or more booleans (u, d, o and/or b) of the
labelling L to False. In the following lemmas, we will prove each of these items.
First, we prove that PREPROCESS (Algorithm 1) labels literals/rules as ⟨1, 0, 0, 0⟩
if and only if there exists no potential argument for/based on them. This is Item 1
of Lemma 3.

Lemma 19 (Soundness and completeness Algorithm 1 for potential arguments).
Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and let
Lp be the labelling after executing Algorithm 1. For each rule r ∈ R: Lp[r] =
⟨1, 0, 0, 0⟩ iff there is no Ap ∈ PQ(AT) such that Ap is based on r. For each literal
l ∈ L: Lp[l] = ⟨1, 0, 0, 0⟩ iff there is no Ap ∈ PQ(AT) such that Ap is a potential
argument for l.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let Lp be the labelling obtained by PREPROCESS

(Algorithm 1) on L, R, , Q and K.

• Left to right (soundness): We proceed by induction:

Proposition (P (n)): Each l ∈ L for which there is a potential argument Ap

in PQ(AT) with h(A) ≤ n is labelled Lp[l] = ⟨1, 1, 1, 1⟩; each r ∈ R such
that there is a potential argument Ap based on r in PQ(AT) with h(Ap) ≤
n+ 1 is labelled Lp[r] = ⟨1, 1, 1, 1⟩.
Base case (P (0)):

– For each l in L such that there is some Ap for l in PQ(AT) and h(Ap) =
0, then by Definition 22 l ∈ Q and for each l′ ∈ l: l′ /∈ K, so by
Algorithm 1 line 3, Lp

0[l] = ⟨1, 1, 1, 1⟩.
– For each r ∈ R such that there is some Ap based on r in PQ(AT) with
h(Ap) = 0, there must be an observation-based potential argument for
each a ∈ ants(r), so for each a ∈ ants(r): Lp[a] = ⟨1, 1, 1, 1⟩. This

97

label must have been assigned by Algorithm 1 line 3, after which r
was labelled Lp[r] = ⟨1, 1, 1, 1⟩ in Algorithm 1 line 12.

Induction hypothesis (P (k)): Each l ∈ L for which there is a potential
argument Ap in PQ(AT) with h(A) ≤ k is labelled Lp[l] = ⟨1, 1, 1, 1⟩; each
r ∈ R such that there is a potential argument Ap based on r in PQ(AT) with
h(Ap) ≤ k + 1 is labelled Lp[r] = ⟨1, 1, 1, 1⟩.
Induction step (P (k + 1)):

– For each l in L such that there is some Ap for l in PQ(AT) and h(Ap) =
k+1, there must be some rule r on which Ap is based; by the induction
hypothesis, Lp[r] = ⟨1, 1, 1, 1⟩. This must have happened in line 12 of
Algorithm 1, after which l was labelled Lp[l] = ⟨1, 1, 1, 1⟩ in line 13.

– For each r ∈ R such that there is some Ap based on r in PQ(AT)
with h(Ap) = k + 2, there must be potential arguments for each a ∈
ants(r) with a height of at most k+1, so by the induction hypothesis,
each a ∈ ants(r): Lp[a] = ⟨1, 1, 1, 1⟩. At least one of these labels
must have been assigned by Algorithm 1 line 13, after which r was
labelled Lp[r] = ⟨1, 1, 1, 1⟩ in Algorithm 1 line 12 in a later iteration
of the while loop.

Finally note that all potential arguments have finite height, so P (n) can be
generalised to all l in L. If Lp[l] = ⟨1, 0, 0, 0⟩ then Lp[l] = ⟨1, 1, 1, 1⟩,
so there is no Ap for l in PQ(AT). Similarly, for each r ∈ R labelled
Lp[r] = ⟨1, 0, 0, 0⟩, there is no Ap based on r in PQ(AT).

• Right to left (completeness): First, we introduce some notation, which is
similar to the interim labelling from Definition 19. Let x ∈ L ∪ R be a
literal or rule; we denote by Lp

0[x] the label given to x by the preprocessing
algorithm (Algorithm 1) between line 7 and 8. Furthermore, Lp

k[x] is the
label given to x by the preprocessing algorithm just after the k’th iteration
of the for loop (line 10–14). Using this notation, we proceed by induction.

Proposition (P (n)): For each l ∈ L such that Lp
n[l] = ⟨1, 1, 1, 1⟩, there is

a potential argument for l in PQ(AT); for each r ∈ R such that Lp
n[r] =

⟨1, 1, 1, 1⟩, there is a potential argument based on r in PQ(AT).

Base case (P (0)):

98

– For each l ∈ L such that Lp
0[l] = ⟨1, 1, 1, 1⟩, the condition in Algo-

rithm 1 line 2 must have applied (l ∈ Q and for each l′ ∈ l: l′ /∈ K),
so by Definition 13, there is an observation-based potential argument
for l in PQ(AT).

– No rule r ∈ R is labelled Lp
n[r] = ⟨1, 1, 1, 1⟩, so for each r ∈ R such

that Lp
n[r] = ⟨1, 1, 1, 1⟩, there is a potential argument based on r in

PQ(AT).

Induction hypothesis (P (k)): For each l ∈ L such that Lp
k[l] = ⟨1, 1, 1, 1⟩,

there is a potential argument for l in PQ(AT); for each r ∈ R such that
Lp
k[r] = ⟨1, 1, 1, 1⟩, there is a potential argument based on r in PQ(AT).

Induction step (P (k + 1)):

– For each r ∈ R such that Lp
k+1[r] = ⟨1, 1, 1, 1⟩, it must be that for each

a ∈ ants(r): Lp
k[a] = ⟨1, 1, 1, 1⟩. Then by the induction hypothesis,

for each a ∈ ants(r), there is a potential argument for a in PQ(AT),
which by Definition 13 implies that there is a potential argument based
on r in PQ(AT).

– For each l ∈ L such that Lp
k+1[l] = ⟨1, 1, 1, 1⟩, it must be that there

is some rule based on which there is a potential argument in PQ(AT).
Consequently, there is a potential argument for l in PQ(AT).

Finally note that Algorithm 1 terminates, given the running time is poly-
nomial in the input (Lemma 4) and the language and rule set are finite.
Consequently, for each l ∈ L: if Lp[l] = ⟨1, 1, 1, 1⟩ then there is a potential
argument for l in PQ(AT). Then by contraposition: if there is no potential
argument for l in PQ(AT), then Lp[l] ̸= ⟨1, 1, 1, 1⟩, so Lp[l] = ⟨1, 0, 0, 0⟩.
Similarly, each r ∈ R based on which there is no potential argument in
PQ(AT) is labelled Lp[r] = ⟨1, 0, 0, 0⟩.

Next, we specify the condition under which a literal l is labelled ¬L[l].u or
a rule r is labelled ¬L[r].u. This is Item 2 of Lemma 3. Note that this is the
reversed version of Lemma 8.

Lemma 20 (Argument existence labelling). Given an argumentation theory AT =
(AS,K) where AS = (L,R,) and Q is a set of queryables, let L be the labelling
obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and K. For each
literal l ∈ L: if there is an argument for l in Arg(AT), then ¬L[l].u. For each
r ∈ R: if there is an argument based on r in Arg(AT) then ¬L[r].u.

99

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We proceed by induction on the height of
arguments for l/based on r.
Proposition (P (n)): Each l ∈ L for which there is an argument A with h(A) ≤ n
is labelled ¬L[a].u and each r ∈ R based on which there is an argument A with
h(A) ≤ n+ 1 is labelled ¬L[r].u.
Base case (P (0)): For each l ∈ L such that there is an argument A for l with
h(A) = 0, it must be that l ∈ K, hence l ∈ Q. This means that the condition
for the if-statement in Algorithm 4 line 4 applies and l is labelled ¬L[l].u in
Algorithm 4 line 5 by Algorithm 2 case L-U-a.

For each r ∈ R such that there is an argument A based on r with h(A) = 1, it
must be that for each a ∈ ants(r) there is an argument A′ for a with h(A) = 0, so
a is labelled ¬L[a].u in Algorithm 4 line 5; consequently r is added to TODO-SET

in line 6. When popped from this set, r is labelled ¬L[r].u by case R-U-a.
Induction hypothesis (P (k)): Each l ∈ L for which there is an argument A with
h(A) ≤ k is labelled ¬L[l].u and each r ∈ R based on which there is an argument
A with h(A) ≤ k + 1 is labelled ¬L[r].u.
Induction step (P (k + 1)): For each l ∈ L such that there is an argument A for l
with h(A) = k+1, it must be that top-rule(A) is labelled ¬L[top-rule(A)].u
(induction hypothesis). After the top rule’s label change, which must have hap-
pened in Algorithm 4 line 9, its consequent l is relabelled in line 11 as ¬L[l].u
(by case L-U-b).

For each r ∈ R such that there is an argument A based on r with h(A) =
k + 2, it must be that for each a ∈ ants(r) there is an argument A′ for a with
h(A) ≤ k + 1, so by the induction hypothesis (applicable if h(A′) ≤ k) and
above conclusion (applicable if h(A′) = k + 1), a is labelled ¬L[a].u. The last of
these antecedents must have been relabelled in Algorithm 4 line 11 or line 15; in
both cases, r is added to TODO-SET immediately afterwards and, when popped,
labelled ¬L[r].u by case R-U-a.

Finally, recall from Definition 17 that all arguments have finite height. This
concludes the proof.

The next lemma shows under which conditions a literal l is labelled ¬L[l].d
and ¬L[l].b. This corresponds to Lemma 3 Item 3.

Lemma 21 (Conditions for ¬L[l].d and ¬L[l].b). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,), let Q be the set of queryable literals and

100

let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, ,
Q and K. For each literal l ∈ L: if each potential argument for l in PQ(AT) is p-
attacked by an observation-based argument in Arg(AT), then ¬L[l].d and ¬L[l].b.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K.
Let l ∈ L be a literal such that each potential argument for l in PQ(AT) is p-

attacked by an observation-based argument in Arg(AT). We proceed by induction
on the height of potential arguments for a literal.
Proposition (P (n)): For each l ∈ L: if for each potential argument Ap for l in
PQ(AT): [h(Ap) ≤ n and Ap is p-attacked by an observation-based argument in
Arg(AT)] then l is labelled ¬L[l].d and ¬L[l].b.
Base case (P (1)): Let l ∈ L be an arbitrary literal such that each potential argu-
ment Ap for l in PQ(AT) has h(Ap) ≤ 1 and Ap is p-attacked by an observation-
based argument in Arg(AT). Note the following:

• There is no potential argument Ap for l in PQ(AT) such that h(Ap) =
0: if such a potential argument would exist, then it would be observation-
based (by Definition 13: l ∈ Q and for each l′ ∈ l: l′ /∈ K), which
means that it could not be p-attacked by an observation-based argument
in Arg(AT).

• l ∈ Q: otherwise, the attack on Ap by some observation-based argu-
ment in Arg(AT) must have been on a subargument, but that is impossi-
ble: since Ap ∈ PQ(AT) and h(Ap) = 1, it must be that for each a ∈
ants(top-rule(Ap)), there is no a′ ∈ a such that a′ ∈ K.

• There is some l′ ∈ l such that l′ ∈ K: if none of l would be in K, then
there would be an observation-based potential argument for l in PQ(AT) that
is not p-attacked by any observation-based argument in Arg(AT), a contra-
diction.

Given that l ∈ Q, l is considered for relabelling by Algorithm 4 line 5 and
labelled ¬L[l].d and ¬L[l].b by Algorithm 2 case L-D-a and L-B-a. As l is
chosen arbitrarily, we can generalise this result.
Induction hypothesis (P (k)): For each l ∈ L: if for each potential argument
Ap for l in PQ(AT): [h(Ap) ≤ k and Ap is p-attacked by an observation-based
argument in Arg(AT)] then l is labelled ¬L[l].d and ¬L[l].b.

101

Induction step (P (k + 1)): Now let l ∈ L be an arbitrary literal such that each
potential argument Ap for l has h(Ap) ≤ k+1 and is p-attacked by an observation-
based argument in Arg(AT). We consider two cases: either l ∈ Q or l /∈ Q.

• First suppose that l ∈ Q. Then there is some l′ ∈ l such that l′ ∈ K: if
for each l′ ∈ l: l′ /∈ K, then there would be an observation-based potential
argument for l in PQ(AT) that is not p-attacked by any observation-based
argument in Arg(AT) (Definition 13); a contradiction. Given that l ∈ Q, l is
considered for relabelling in Algorithm 4 line 5 and labelled ¬L[l].d and
¬L[l].b by Algorithm 2 case L-D-a and L-B-a.

• Alternatively suppose that l /∈ Q. Then each potential argument for l in
PQ(AT) must be rule-based. Let r ∈ R be an arbitrary rule for l. We
consider two cases and show that ¬L[r].d and ¬L[r].b:

– If Lp[r] = ⟨1, 0, 0, 0⟩ then L[r] = ⟨1, 0, 0, 0⟩ since there is no oper-
ation in Algorithm 4 that can turn booleans from False to True. This
implies that r is labelled ¬L[r].d and ¬L[r].b.

– Alternatively, Lp[r] = ⟨1, 1, 1, 1⟩, so by Lemma 19, there is an Ap

based on r in PQ(AT). Since Ap is p-attacked by an observation-based
argument in Arg(AT) and l /∈ Q, it must be p-attacked on a subargu-
ment.
Next we prove that there is some a ∈ ants(r) such that each Ap

i

for a is p-attacked by an observation-based argument in Arg(AT):
if this would not be the case, we could construct a potential argument
Ap

l = Ap
1, . . . , A

p
n ⇒ l for l that is not p-attacked by an observation-

based argument in Arg(AT); a contradiction.
Then by the induction hypothesis ¬L[a].d and ¬L[a].b. This la-
bel cannot be caused by the preprocessing step: if Lp[a] would be
⟨1, 0, 0, 0⟩, then r would be labelled ⟨1, 0, 0, 0⟩ in Algorithm 1 line 6,
and never be relabelled to ⟨1, 1, 1, 1⟩ by line 12; a contradiction. So
Lp[a] = ⟨1,1,1,1⟩. As a consequence, a must have been labelled
¬L[a].d and ¬L[a].b in Algorithm 4 line 5, line 11 or line 15. In all
cases, r is added to TODO-SET immediately afterwards and relabelled
in a later iteration of the while loop (Algorithm 4 line 9) as ¬L[r].d
and ¬L[r].b by case R-D-a and R-B-b.

102

Thus in both cases, r is labelled ¬L[r].d and ¬L[r].b. Since r is an
arbitrary rule for l, we can generalise this to all rules for l in R. Finally, to
show that l is labelled ¬L[l].d and ¬L[l].b, we consider two possibilities:

– If each rule r for l is labelled Lp[r] = ⟨1, 0, 0, 0⟩ then l is initially
labelled ⟨1, 0, 0, 0⟩ by Algorithm 1 line 4. Since line 12 was never
reached for any rule r for l, line 13 was not reached for l, hence Lp[l]
remains ⟨1, 0, 0, 0⟩. No operation in Algorithm 4 turns booleans to
True, so ¬L[l].d and ¬L[l].b.

– Alternatively, there is a rule r for l that is labelled Lp[r] = ⟨1, 1, 1, 1⟩.
Since r is a rule for l, it must be labelled ¬L[r].d and ¬L[r].b. This
must have been caused by Algorithm 4 line 9; after this change, l has
been considered for relabelling by line 11 and labelled ¬L[l].d and
¬L[l].b by case L-D-b and L-B-b.

At this point, we have proven P (n) for each non-negative integer n ∈ N.
Given that all potential arguments have finite height, we have shown for each
l ∈ L: if each potential argument for l in PQ(AT) is p-attacked by an observation-
based argument in Arg(AT), then l is labelled ¬L[l].d and ¬L[l].b.

Lemma 22 shows under which conditions a literal l is labelled ¬L[l].u and
¬L[l].o. This corresponds to the left-to-right part of Lemma 3 Item 4.

Lemma 22 (Conditions for ¬L[l].u and ¬L[l].o). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,), let Q be the set of queryable literals
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R,

, Q and K. For each literal l ∈ L: if there is an argument A for l in Arg(AT)
and there is no observation-based potential argument in PQ(AT) that p-attacks A,
then ¬L[l].u and ¬L[l].o.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,), let
Q be a set of queryables and let L be the labelling obtained by STABILITY-LABEL

on L, R, , Q and K. We proceed by induction:
Proposition (P (n)): If there is an argument A for l in Arg(AT) such that h(A) ≤ n
and there is no observation-based potential argument in PQ(AT) that p-attacks A,
then l is labelled ¬L[l].u and ¬L[l].o.
Base case (P (0)): Suppose that there is an argument A for l in Arg(AT) such that
h(A) ≤ 0. Then l ∈ K (Definition 17), so l is relabelled in Algorithm 4 line 5 as
¬L[l].u and ¬L[l].o by Algorithm 2 case L-U-a and L-O-a.

103

Induction hypothesis (P (k)): If there is an argument A for l in Arg(AT) such
that h(A) ≤ k and there is no observation-based potential argument in PQ(AT)
that p-attacks A, then l is labelled ¬L[l].u and ¬L[l].o.
Induction step (P (k + 1)): Now suppose that there is an argument A for l in
Arg(AT) such that h(A) = k + 1 and there is no observation-based potential
argument in PQ(AT) that p-attacks A. Then by Definition 17 there is a rule r
for l such that for each antecedent a ∈ ants(r), there is an argument Ai for
a in Arg(AT), such that Ai is not p-attacked by any observation-based potential
argument in PQ(AT) and h(Ai) ≤ k. Then by the induction hypothesis, each a ∈
ants(r) is labelled ¬L[a].u and ¬L[a].o. This label change must have happened
in line 5, 11 or 15 of Algorithm 4, but in all cases, r is added to TODO-SET

immediately afterwards (line 6/13/17) and considered for relabelling in line 9 of a
later iteration of the while loop. By case R-U-a and R-O-a, r is labelled ¬L[r].u
and ¬L[r].o. Subsequently, l is considered for relabelling in line 11 and labelled
¬L[l].u by case L-U-b. Furthermore, l is labelled ¬L[l].o by either case L-O-e (if
l /∈ Q) or L-O-c (if l ∈ Q, because then no observation-based potential argument
for some l′ ∈ l would p-attack A, which means that for each l′ ∈ l, some l′′ ∈ l′

must be in K).
We have proven P (n) for each n ∈ N. Recall that all arguments have a finite

height. This means that for each l ∈ L: if there is an argument A for l in Arg(AT)
and there is no observation-based potential argument in PQ(AT) that p-attacks A,
then l is labelled ¬L[l].u and ¬L[l].o.

Lemma 23 shows the consequences of the label ¬L[l].u and ¬L[l].o of a literal
l: if it is labelled as such, we can derive that there is an argument for l in Arg(AT)
that is not p-attacked by any observation-based potential argument in PQ(AT).
This corresponds to the right-to-left part of Lemma 3 Item 4.

Lemma 23 (Consequences of ¬L[l].u and ¬L[l].o). Let AT = (AS,K) be an
argumentation theory where AS = (L,R,), let Q be the set of queryable literals
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L,
R, , Q and K. For each literal l ∈ L: if ¬L[l].u and ¬L[l].o then there is an
argument A for l in Arg(AT) and there is no observation-based potential argument
in PQ(AT) that p-attacks A.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

on L, R, , Q and K. We proceed by induction.

104

Proposition (P (n)): For each l ∈ L that is labelled ¬L[l].u and ¬L[l].o such that
c{u,o}(l) ≤ n, there is an argument for l in Arg(AT) that is not p-attacked by any
observation-based potential argument in PQ(AT).
Base case (P (0)): Let l ∈ L be an arbitrary literal labelled ¬L[l].u and ¬L[l].o
such that c{u,o}(l) ≤ 0. The label ¬L[l].u cannot be assigned by PREPROCESS,
so l must have been relabelled in Algorithm 4 line 5. At that point, all rules for
l are still labelled L[r].u, so ¬L[l].u cannot be caused by Algorithm 2 case L-U-
b hence must be caused by L-U-a: l ∈ K. Then there is an observation-based
argument for l in Arg(AT), which by Definition 14 cannot be p-attacked by any
observation-based potential argument in PQ(AT).
Induction hypothesis (P (k)): For each l ∈ L that is labelled ¬L[l].u and ¬L[l].o
such that c{u,o}(l) ≤ k, there is an argument for l in Arg(AT) that is not p-attacked
by any observation-based potential argument in PQ(AT).
Induction step (P (k + 1)): Let l ∈ L be an arbitrary literal labelled ¬L[l].u
and ¬L[l].o such that c{u,o}(l) = k + 1. This means that l /∈ K (if l ∈ K then
c{u,o}(l) = 0). So the label ¬L[l].u must have been caused by case L-U-b: there
is a rule r for l labelled ¬L[r].u. Then by Lemma 9, the label ¬L[l].o cannot be
caused by case L-O-f and therefore must be caused by case L-O-b, L-O-c, L-O-d
or L-O-e. In any of these four cases: there is a rule r for l labelled ¬L[r].u and
¬L[r].o (c{u,o}(r) = k+1) and if l ∈ Q then for each l′ ∈ l there is an l′′ ∈ l such
that l′′ ∈ K.

Given that there is a rule r for l labelled ¬L[r].u and ¬L[r].o, each antecedent
a of l must be labelled ¬L[a].u and ¬L[a].o by case R-U-a and R-O-a and the fact
that c{u,o}(a) ≤ k. Then by the induction hypothesis, for each a ∈ ants(r) there
is an argument A for a in Arg(AT) that is not p-attacked by any observation-based
potential argument in PQ(AT) on a subargument.

Finally, since either l /∈ Q or for each l′ ∈ l there is some l′′ ∈ l′ such
that l′′ ∈ K, there is no observation-based potential argument for any l′ ∈ l, p-
attacking A on its conclusion. To conclude, there is an argument for l that is not
p-attacked by any observation-based potential argument in PQ(AT).
We have proven P (i) for each non-negative integer i < n. Since Algorithm 4
has a polynomial runtime (Proposition 4), there must be some finite non-negative
i < n such that for each l ∈ L: if ¬L[l].u and ¬L[l].o then there is an argument for
l in Arg(AT) that is not p-attacked by any observation-based potential argument in
PQ(AT).

The next lemma shows in which situations a literal l is labelled ¬L[l].d by

105

STABILITY-LABEL. This corresponds to Lemma 3 Item 5.

Lemma 24 (Conditions for ¬L[l].d). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,), let Q be the set of queryable literals and let L be
the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R, , Q and
K. For each literal l ∈ L: if each potential argument Ap for l in PQ(AT) is p-
attacked by an argument B in Arg(AT) and there is no observation-based potential
argument in PQ(AT) that p-attacks B, then ¬L[l].d.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,)
and let Q be a set of queryables. Let L be the labelling obtained by STABILITY-
LABEL on L, R, , Q and K. Let l be an arbitrary literal in L and suppose that
each potential argument Ap for l in PQ(AT) is p-attacked by an argument B in
Arg(AT) that is not p-attacked by any observation-based potential argument in
PQ(AT). We proceed by induction on the height of potential arguments.
Proposition (P (n)):

• For each l ∈ L, if each potential argument Ap for l has a height h(Ap) ≤ n
and is p-attacked by an argument in Arg(AT) that is not p-attacked by any
observation-based potential argument in PQ(AT), then l is labelled ¬L[l].d;
and

• For each r ∈ R, if each potential argument Ap based on r has a height
h(Ap) ≤ n + 1 and is p-attacked on a subargument by an argument in
Arg(AT) that is not p-attacked by any observation-based potential argument
in PQ(AT), then r is labelled ¬L[r].d.

Base case (P (0)):

• Let l ∈ L be an arbitrary literal such that each potential argument for l has
a height of 0 and is p-attacked by an argument that is not p-attacked by any
observation-based potential argument in PQ(AT).

– If l ∈ Q then there is some l′ ∈ l that is in K: otherwise, by Defini-
tion 13 there would be some observation-based potential argument for
l that p-attacks each argument in Arg(AT) by which it is p-attacked; a
contradiction. Then l is labelled in Algorithm 4 line 5 as ¬L[l].d by
Algorithm 2 case L-D-a.

– If l /∈ Q then there is no potential argument for l in PQ(AT), so by
Lemma 19 Lp[l] = ⟨1, 0, 0, 0⟩, hence ¬L[l].d.

106

• Let r ∈ R be an arbitrary rule such that each potential argument based on r
has a height of at most 1 and is p-attacked on a subargument by an argument
that is not p-attacked any observation-based potential argument in PQ(AT).

Then there is no potential argument based on r in PQ(AT): suppose,
towards a contradiction, that such a potential argument Ap would exist, then
Ap would be p-attacked on a subargument A′ by an argument B in Arg(AT).
Given that h(Ap) = 1, A′ must be observation-based, so there is some a ∈
ants(r) such that a ∈ Q and for each a′ ∈ a: a′ /∈ K. However, that would
mean that B’s conclusion is not in K, so (the observation-based potential
argument) A′ p-attacks B; a contradiction.

Consequently, r is labelled Lp[r] = ⟨1, 0, 0, 0⟩ (Lemma 19), which implies
¬L[r].d.

Induction hypothesis (P (k)):

• For each l ∈ L, if each potential argument Ap for l has a height h(Ap) ≤ k
and is p-attacked by an argument in Arg(AT) that is not p-attacked by any
observation-based potential argument in PQ(AT), then l is labelled ¬L[l].d;
and

• For each r ∈ R, if each potential argument Ap based on r has a height
h(Ap) ≤ k + 1 and is p-attacked on a subargument by an argument in
Arg(AT) that is not p-attacked by any observation-based potential argument
in PQ(AT), then r is labelled ¬L[r].d.

Induction step (P (k + 1)):

• Let l ∈ L be an arbitrary literal such that each potential argument for l has
a height of at most (k + 1) and is p-attacked by an argument that is not
p-attacked by any observation-based potential argument in PQ(AT).

– If l ∈ Q then there is some l′ ∈ l such that l′ ∈ K (see base case) so l
is labelled ¬L[l].d by L-D-a.

– Alternatively, l /∈ Q. We distinguish two options:

* First suppose that there is an argument B for some l′ ∈ l in
Arg(AT) that is not p-attacked by any observation-based po-
tential argument in PQ(AT). Given l′ /∈ Q, B must be rule-
based: there is a rule r′ for l′ such that for each a′ ∈ ants(r′),

107

there is an argument for a′ in Arg(AT) that is not p-attacked by
any observation-based potential argument in PQ(AT). Then by
Lemma 22, each a′ ∈ ants(r′) is labelled ¬L[a′].u and ¬L[a′].o.
Given that Lp[a

′] = ⟨1, 1, 1, 1⟩ for each a′ ∈ ants(r) (Lemma 9),
these labels must have been assigned in Algorithm 4 line 5, 11
or 15. In all cases, r′ is added to TODO-SET immediately after-
wards, considered for relabelling in a later iteration of the while
loop (Algorithm 4 line 9) and labelled ¬L[r′].u and ¬L[r′].o
by case R-U-a and R-O-a. Subsequently, l is relabelled in Algo-
rithm 4 line 15 (recall that l′ ∈ l implies l ∈ l′), as ¬L[l].d by
case L-D-c.

* Alternatively, for each l′ ∈ l, each argument for l′ in Arg(AT)
is p-attacked by some observation-based potential argument
in PQ(AT). Then each potential argument for l in PQ(AT) must
be rule-based. So for each rule r for l in R: each potential argu-
ment based on r has h(Ap) ≤ k + 1 and is p-attacked by an argu-
ment in Arg(AT) that is not p-attacked by any observation-based
potential argument in PQ(AT). By the induction hypothesis, each
rule r for l in R is labelled ¬L[r].d.

· If this happened in preprocessing, Algorithm 1 line 12 was
never reached for any r for l, so line 13 was not reached either,
so Lp[l] = ⟨1, 0, 0, 0⟩, which implies ¬L[l].d.

· Alternatively, some rule for l that was relabelled, must have
been considered by Algorithm 4 line 9, which means that l
was relabelled in line 11 as ¬L[l].d by case L-D-b.

• Let r ∈ R be an arbitrary rule such that each potential argument Ap based
on r has h(Ap) ≤ (k + 2) and is p-attacked on a subargument by an argu-
ment B in Arg(AT) that is not p-attacked by any observation-based potential
argument in PQ(AT). Then there is at least one a ∈ ants(r) such that each
potential argument A′ for a has h(A′) ≤ k+1 and is p-attacked by an argu-
ment B in Arg(AT) and there is no observation-based potential argument in
PQ(AT) that p-attacks B, which implies that a is labelled ¬L[a].d (see the
item above).

– If this happened in preprocessing, then Algorithm 1 line 11 never ap-
plied for r so line 8 was never reached, hence Lp[r] = ⟨1, 0, 0, 0⟩,
therefore, ¬L[r].d.

108

– Alternatively, a was labelled ¬L[a].d by Algorithm 4 line 5, 11 or 15;
in all cases, r was added to TODO-SET immediately afterwards and,
when being popped from this set, labelled ¬L[r].d by R-D-a in line 9.

Finally, recall that each potential argument has finite height, so from P (n) we
can generalise to each l ∈ L.

Finally, Lemma 25 specifies in which situations L[l] = ⟨0, 1, 0, 0⟩. This cor-
responds to Item 6 of Lemma 3.

Lemma 25 (Conditions for L[l] = ⟨0, 1, 0, 0⟩). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,), let Q be the set of queryable literals
and let L be the labelling obtained by STABILITY-LABEL (Algorithm 4) on L, R,

, Q and K. For each literal l ∈ L: if there is an argument A for l in Arg(AT)
and each potential argument Bp in PQ(AT) that p-attacks A is p-attacked by an
observation-based argument in Arg(AT), then L[l] = ⟨0, 1, 0, 0⟩.
Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
let Q be a set of queryables. Let L be the labelling obtained by STABILITY-LABEL

(Algorithm 4) on L, R, , Q and K. We proceed by induction; in order to prove
the lemma for literals, we will also prove an auxiliary statement for rules.
Proposition (P (n)):

• For each l ∈ L for which there is an argument A ∈ Arg(AT) for l such that
h(A) ≤ n and each potential argument in PQ(AT) attacking it is attacked by
an observation-based argument in Arg(AT), L[l] = ⟨0, 1, 0, 0⟩.

• For each r ∈ R based on which there is an argument A ∈ Arg(AT) such
that h(A) ≤ n + 1 and each potential argument in PQ(AT) attacking it on
a subargument is attacked by an observation-based argument in Arg(AT),
L[r] = ⟨0, 1, 0, 0⟩.

Base case (P (0)):

• For each l ∈ L for which there is an argument A ∈ Arg(AT) for l such
that h(A) = 0, l ∈ K. Then l is labelled in Algorithm 4 line 5 as L[l] =
⟨0, 1, 0, 0⟩ by Algorithm 2 case L-U-a, L-O-a and L-B-a.

• For each r ∈ R based on which there is an argument A ∈ Arg(AT) such
that h(A) ≤ 1, each a ∈ ants(r) is in K and therefore labelled L[a] =
⟨0, 1, 0, 0⟩. Afterwards, r is added to TODO-SET in line 6 and relabelled in
line 9 as L[r] = ⟨0, 1, 0, 0⟩ by case R-U-a, R-O-a and R-B-a.

109

Induction hypothesis (P (k)):

• For each l ∈ L for which there is an argument A ∈ Arg(AT) for l such that
h(A) ≤ k and each potential argument in PQ(AT) attacking it is attacked by
an observation-based argument in Arg(AT), L[l] = ⟨0, 1, 0, 0⟩.

• For each r ∈ R based on which there is an argument A ∈ Arg(AT) such
that h(A) ≤ k + 1 and each potential argument in PQ(AT) attacking it on
a subargument is attacked by an observation-based argument in Arg(AT),
L[r] = ⟨0, 1, 0, 0⟩.

Induction step (P (k + 1)):

• Let l be an arbitrary literal from L for which there is an argument A ∈
Arg(AT) such that h(A) = k + 1 and each potential argument in PQ(AT)
attacking it is attacked by an observation-based argument in Arg(AT).

– If l ∈ K then l is labelled L[l] = ⟨0,1,0,0⟩ in line 5 by case L-U-a,
L-O-a and L-B-a.

– Alternatively, suppose that l /∈ K.
First we show that each rule r′ for each l′ ∈ l (if any) is labelled
¬L[r′].d and ¬L[r′].b. Let r′ ∈ R be an arbitrary rule for some l′ ∈ l.

* If there is a potential argument based on r′ in PQ(AT), then there
is a potential argument for each a′ ∈ ants(r′) in PQ(AT) (Defini-
tion 13).
Note that there must be some a′ ∈ ants(r′) such that each po-
tential argument for a′ is p-attacked by an observation-based ar-
gument in Arg(AT): suppose, towards a contradiction, that this
is not the case. Then we could construct a potential argument
Bp based on r′ (hence p-attacking A on its conclusion) from the
potential arguments for a′ ∈ ants(r) that is not p-attacked on
a subargument by any observation-based argument in Arg(AT).
Since l′ ̸∈ Q, Bp cannot be p-attacked on its conclusion either by
any observation-based argument in Arg(AT); a contradiction.
Then by Lemma 21, there must be some antecedent a′ ∈ ants(r′)
that is labelled ¬L[a′].d and ¬L[a′].b. This implies that r′ is la-
belled ¬L[r′].d and ¬L[r′].b (Algorithm 3 case R-D-a and R-B-b).

* Otherwise L[r′] = ⟨1, 0, 0, 0⟩ by Lemma 19, which implies that
¬L[r′].d and ¬L[r′].b.

110

Since r′ was chosen arbitrarily, each rule r′ for each l′ ∈ l must be
labelled ¬L[r′].d and ¬L[r′].b.
Recall that A is rule-based because h(A) = k + 1. Let r be the top
rule of A. By the induction hypothesis, L[r] = ⟨0, 1, 0, 0⟩.
Also note that either l ∈ Q or for each l′ ∈ l, there is some l′′ ∈ l′ in
K: if this would not be the case, then there would be an (observation-
based) potential argument for some l′ ∈ l in PQ(()AT) (p-attacking A)
that is not attacked by any observation-based argument in Arg(AT).
After relabelling each r′ for each l′ ∈ l and r this way in Algorithm 4
line 9, l is relabelled in line 11 or 15 as L[l] = ⟨0,1,0,0⟩ by case
L-U-b, L-O-c or L-O-e and L-B-d.

• Let r be an arbitrary rule from R based on which there is an argument
A ∈ Arg(AT) such that h(A) ≤ k+2 and each potential argument in PQ(AT)
attacking it is attacked by an observation-based argument in Arg(AT). Then
by the induction hypothesis, each a ∈ ants(r) is labelled L[a] = ⟨0, 1, 0, 0⟩;
this must have happened in Algorithm 4 line 5, 11 or 15; in all cases, r is
added to TODO-SET immediately afterwards and labelled in a later iteration
of line 9 as L[r] = ⟨0, 1, 0, 0⟩ by case R-U-a, R-O-a and R-B-a.

At this point, we have proven P (n) for each non-negative integer n ∈ N. Since
each argument has finite height, we can generalise to each l ∈ L and each r ∈ R,
which concludes our proof.

We have now formally proven all items in Lemma 3:

Lemma 3 (Conditions for labelling). Let AT = (AS,K) be an argumentation
theory where AS = (L,R,) and let L be the labelling after executing the
STABILITY-LABEL algorithm on L, R, , Q and K. Let Lp be the labelling
after executing PREPROCESS on L, R, , Q and K. Let l ∈ L be a literal. Then:

1. Lp[l] = ⟨1, 0, 0, 0⟩ iff there is no potential argument Ap for l in PQ(AT).

2. If there is an argument for l in Arg(AT), then ¬L[l].u.

3. If each potential argument for l in PQ(AT) is p-attacked by an observation-
based argument in Arg(AT), then ¬L[l].d and ¬L[l].b.

4. There is an argument A for l in Arg(AT) and there is no observation-based
potential argument in PQ(AT) that p-attacks A iff ¬L[l].u and ¬L[l].o.

111

5. If each potential argument Ap for l in PQ(AT) is p-attacked by an argu-
ment B in Arg(AT) and there is no observation-based potential argument in
PQ(AT) that p-attacks B, then ¬L[l].d.

6. If there is an argument A for l in Arg(AT) and each potential argument Bp

in PQ(AT) that p-attacks A is p-attacked by an observation-based argument
in Arg(AT), then L[l] = ⟨0, 1, 0, 0⟩.

Proof. We have proven these items in the Lemmas 19, 20, 21, 22, 24 and 25,
respectively.

From the above result, we can derive in which situations literals are stable in
the argumentation theory, but not labelled as such. First, Lemma 26 specifies the
situations in which a literal l is labelled L[l].u or L[l].o, while l is not unsatisfiable
or out in any future argumentation theory (hence the label ¬L[l].u and ¬L[l].o
would be correct).

Lemma 26 (Incorrect labelling L[l].u or L[l].o). Let AT = (AS,K) be an argu-
mentation theory where AS = (L,R,) and let L be the labelling after executing
the STABILITY-LABEL algorithm on L, R, , Q and K. Given a literal l ∈ L, if
for each AT′ ∈ FQ(AT), l is not unsatisfiable or out in AT′, but l is labelled L[l].u
or L[l].o, then either l is observation-unattackable in AT w.r.t. Q or some argu-
ment for l in Arg(AT) is p-attacked by an observation-based potential argument
Bp such that the introduction of Bp in AT forces a new argument for l.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,)
and let Q be a set of queryables. Let L be the labelling obtained by STABILITY-
LABEL (Algorithm 4) on L, R, , Q and K. Let l ∈ L be a literal such that for
each AT′ ∈ FQ(AT), l is not unsatisfiable or out in AT′ and l is labelled L[l].u or
L[l].o.

Given that l is labelled L[l].u or L[l].o, each argument for l in Arg(AT) is
p-attacked by an observation-based potential argument in PQ(AT) (Lemma 22).
Since l is not unsatisfiable or out in any AT′ ∈ FQ(AT), for each AT′ ∈ FQ(AT)
there is at least one argument for l in Arg(AT′) that is not p-attacked by an obser-
vation-based argument in Arg(AT′) (Lemma 7).

So each argument A for l in Arg(AT) that is not attacked by an observation-
based argument in Arg(AT) must be p-attacked by some observation-based poten-
tial argument Bp in PQ(AT). Let S be the set of all arguments for l in Arg(AT)
that are not attacked by any observation-based argument in Arg(AT). We consider
two possibilities:

112

• If there exists some consistent K′ such that each argument in S is attacked
by an observation-based argument in Arg((AS,K∪K′)),9 then AT′ = (AS,K∪
K′) must be in FQ(AT). Let K′ be a minimal set with this property; this
implies that each k ∈ K′ is the conclusion of some observation-based po-
tential argument in PQ(AT) that p-attacks an argument in S. Given that l
is not unsatisfiable or out in AT′, there must be some argument B for l in
Arg(AT′) that is not attacked by an observation-based argument and there-
fore cannot be in S, so B /∈ Arg(AT). Then by Definition 16, some ar-
gument A ∈ Arg(AT) for l is p-attacked by at least one observation-based
potential argument Bp such that the introduction of Bp in AT forces a new
argument for l.10

• Alternatively, there is no consistent K′ such that each argument in S is at-
tacked by an observation-based argument in Arg((AS,K ∪ K′)); then there
is no consistent set of observation-based potential arguments T p ⊆ PQ(AT)
such that each argument for l in Arg(AT) is p-attacked by some potential
argument in T p.11 Then by Definition 15, l is observation-unattackable in
AT w.r.t. Q.

Finally, we use Lemmas 3 and 26 to specify the other situations in which
STABILITY-LABEL does not detect stability in Proposition 3.

Proposition 3 (Conditional completeness stability labelling). Let AT = (AS,K)
be an argumentation theory where AS = (L,R,) and let L be the labelling
after executing the STABILITY-LABEL algorithm on L, R, , Q and K. Given a
literal l ∈ L, if l is stable in AT but l is not labelled stable by L, then some of the
following five cases applies:

1. l is stable-unsatisfiable in AT and each potential argument for l in PQ(AT)
is inconsistent.

9See Figure 12 in the paper for an example: let S be all arguments for t in Arg(AT): S =
{[q1 ⇒ q2] ⇒ t}. It is possible to attack all these arguments by adding K′ = {¬q2} to the
knowledge base.

10Note that this new argument is not attacked by an observation-based argument in Arg(AT′),
but may be attacked by an observation-based argument in some Arg(AT′′) where AT′′ ∈ FQ(AT′).
Figure B.19 is an example of this situation: adding q2 to the knowledge base results in a new
argument [q2 ⇒ ¬q3] ⇒ t for t, but this argument can be attacked in a future argumentation
theory by adding q3 to the knowledge base.

11See Figure 11 in the paper for an example.

113

q1⟨0, 1, 0, 0⟩

¬q2⟨0, 1, 1, 0⟩

q2

¬q3

q3

¬q4

. . .

. . .

qn

t⟨0, 1, 1, 0⟩

⟨0, 1, 0, 0⟩

⟨0, 1, 1, 0⟩

Figure B.19: t is stable-defended in AT. However, t is labelled L[t].o because the ar-
gument [q1 ⇒ ¬q2] ⇒ t is p-attacked by the observation-based potential argument
q2. The introduction of this potential argument in AT forces a new argument for t, i.e.
[q2 ⇒ ¬q3] ⇒ t. (Case 2b)

2. l is stable-defended or stable-blocked in AT and:

(a) l is observation-unattackable in AT w.r.t. Q;12 or

(b) some argument A for l in Arg(AT) is p-attacked by an observation-
based potential argument Bp such that the introduction of Bp in AT
forces a new argument for l.

3. l is stable-defended in AT and there is an argument A for l in Arg(AT) that
is p-attacked by a potential argument in PQ(AT) that is not p-attacked by
an argument in Arg(AT) and:

(a) each potential argument in PQ(AT) p-attacking A that is not p-attacked
by an argument in Arg(AT) is inconsistent; or

(b) there is a consistent potential argument Bp in PQ(AT) p-attacking A
that is not p-attacked by an argument in Arg(AT), but the introduction
of Bp in AT forces a new argument for l; or

(c) l is unattackable in AT w.r.t. Q.

4. l is stable-out in AT and each potential argument for l in PQ(AT) that is not
p-attacked by an observation-based argument in Arg(AT) has inconsistent
premises; or

12This condition is specifically required for argumentation systems that do not have classical
negation as a contrariness function.

114

5. l is stable-blocked in AT and there is a potential argument Ap for l in
PQ(AT) such that each argument in Arg(AT) p-attacking Ap is p-attacked
by an observation-based potential argument Cp in PQ(AT) and:

(a) Ap is inconsistent; or

(b) the introduction of Ap in AT forces an argument attacking Ap; or

(c) the introduction of Cp in AT forces an argument that p-attacks Ap.

Proof. Let AT = (AS,K) be an argumentation theory where AS = (L,R,) and
Q is a set of queryables and let L be the labelling after executing the STABILITY-
LABEL algorithm on L, R, , Q and K. Let Lp be the labelling after executing
PREPROCESS on L, R, , Q and K and let l ∈ L be a literal.

Unsatisfiable Suppose that l is stable-unsatisfiable in AT and L[l] ̸= ⟨1, 0, 0, 0⟩.13

Then Lp[l] ̸= ⟨1, 0, 0, 0⟩, so by Lemma 19, there is a potential argument
for l in PQ(AT). Each potential argument for l in PQ(AT) is inconsistent,
as we show next by contradiction. If there would be some consistent Ap

for l in PQ(AT), then K′ = K ∪ prem(Ap) is consistent, since prem(Ap) is
required to be consistent with K by Definition 13. Then AT′ = (AS,K′) is an
argumentation theory in FQ(AT) and Ap ∈ Arg(AT′); contradiction. Thus
there is a potential argument for l in PQ(AT) but each potential argument
for l in PQ(AT) is inconsistent (Case 1).

Out Suppose that l is stable-out in AT and L[l] ̸= ⟨0, 0, 1, 0⟩.14 AT ∈ FQ(AT), so l
is out and therefore not unsatisfiable in AT. Then by Lemma 20, l is labelled
¬L[l].u. So l must be labelled L[l].d or L[l].b, while for each AT′ ∈ FQ(AT),
l is not defended or blocked in AT′. Then by Lemma 21, there is a potential
argument for l in PQ(AT) that is not p-attacked by any observation-based
argument in Arg(AT). Let Ap be an arbitrary potential argument with this
property. Next, we show by contradiction that Ap is inconsistent.

Suppose that Ap is consistent; then K∪prem(Ap) is consistent. This means
that AT′ = (AS,K ∪ prem(Ap)) is an argumentation theory in FQ(AT) and
that A ∈ Arg(AT′). Since l is not defended and blocked in any future ar-
gumentation theory of AT, it must be unsatisfiable or out in AT′, which by
Definition 8 and Lemma 7 means that each argument for l in Arg(AT′) must

13See f in Example 9.
14See for example Figure B.23: t is stable-out in AT but not labelled as such.

115

be attacked by an observation-based argument in Arg(AT′). Given that Ap

is not p-attacked by any observation-based argument in Arg(AT), Ap cannot
be attacked by any observation-based argument in Arg(AT). Hence Ap must
be attacked by an observation-based argument in Arg(AT′)\Arg(AT), which
means that it has its only premise in prem(Ap). This however contradicts
with the assumed consistency of prem(Ap).

To conclude, each potential argument for l in PQ(AT) that is not p-attacked
by an observation-based argument in Arg(AT) is inconsistent. (Case 4)

Defended Suppose that l is stable-defended in AT and L[l] ̸= ⟨0, 1, 0, 0⟩. We
consider two cases.

• First suppose that l is labelled L[l].u or L[l].o. Since l is defended in
AT′ for each AT′ ∈ FQ(AT), we know that for each AT′ ∈ FQ(AT),
l is not unsatisfiable or out in AT′. Then by Lemma 26, either l is
observation-unattackable in AT w.r.t. Q or some argument for l in
Arg(AT) is p-attacked by an observation-based potential argument Bp

such that the introduction of Bp in AT forces a new argument for l
(Case 2).

• Alternatively, l is labelled ¬L[l].u and ¬L[l].o. By Lemma 25, the fact
that L[l] ̸= ⟨0, 1, 0, 0⟩ implies that each argument for l in Arg(AT) is p-
attacked by some potential argument in PQ(AT) that is not p-attacked
by any observation-based argument in Arg(AT). Given that l is la-
belled ¬L[l].u and ¬L[l].o, by Lemma 23 there is an argument A for
l in Arg(AT) that is not p-attacked by any observation-based poten-
tial argument in PQ(AT). A is however p-attacked by some potential
argument in PQ(AT) (that is not p-attacked by any observation-based
argument in Arg(AT)), which must then be rule-based. We consider
two possibilities:

– One possibility would be that each potential argument in PQ(AT)
p-attacking A that is not p-attacked by any observation-based ar-
gument in Arg(AT) is inconsistent15 (Case 3a).

– Alternatively, there exists some consistent potential argument Bp

in PQ(AT) that p-attacks A and is not p-attacked by any observation-

15See Figure B.20 for an example. The only argument for t in Arg(AT) is p-attacked by an
inconsistent potential argument.

116

based argument in Arg(AT). Let b = conc(Bp) and consider
AT′ = (AS,K ∪ {b}). There are two possibilities:

* The introduction of Bp in AT forces a new argument for l16.
This corresponds to Case 3b.

* Alternatively, the arguments for t in Arg(AT′) are exactly the
same as the arguments for t in Arg(AT). Then it cannot be
possible to attack all arguments for t at the same time by ar-
guments that are not attacked by an observation-based argu-
ment. So by Definition 15, l is unattackable in AT w.r.t. Q17

(Case 3c).

Blocked Suppose that for each AT′ ∈ FQ(AT), l is blocked in AT′ and L[l] ̸=
⟨0, 0, 0, 1⟩. We consider two cases.

• First suppose that l is labelled L[l].u or L[l].o. Since l is blocked
in each AT′ ∈ FQ(AT), it cannot be unsatisfiable or out. Then by
Lemma 26, either l is observation-unattackable in AT w.r.t. Q or some
argument for l in Arg(AT) is p-attacked by an observation-based po-
tential argument Bp such that the introduction of Bp in AT forces a
new argument for l (Case 2).

• Alternatively, l is labelled ¬L[l].u and ¬L[l].o but still L ̸= ⟨0, 0, 0, 1⟩.
Then l should be labelled L[l].d. By Lemma 24 there is a potential
argument Ap ∈ PQ(AT) for l such that each argument B in Arg(AT)
that p-attacks Ap is p-attacked by some observation-based potential
argument Cp ∈ PQ(AT). Given that l is stable-blocked in AT, l /∈ Q
(otherwise there would be some future argumentation theory in which
either l or some of its contradictories would be in the knowledge base).
So each potential argument for l in PQ(AT) must be rule-based.

– One possibility is that prem(Ap) is inconsistent.18 This corre-
sponds to Case 5a.

16See Figure B.21: the introduction of each potential argument p-attacking the argument [q1 ⇒
a] ⇒ t in AT forces a new argument for t.

17See Figure B.22 for an example: there are two arguments for t in Arg(AT), but it is not possible
to attack them both because the set of potential attackers attacking arguments for t in Arg(AT) is
inconsistent.

18In Figure B.24 there is an inconsistent potential argument for t that is not p-attacked by any
argument in Arg(AT).

117

q1⟨1, 1, 0, 0⟩ ¬q1 ⟨1, 1, 0, 0⟩

¬t⟨1, 0, 0, 1⟩ t ⟨0, 1, 0, 1⟩

q2 ⟨0, 1, 0, 0⟩

⟨1, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩

Figure B.20: Although t is stable-defended in AT, it is labelled L[t].b because the only ar-
gument for t in Arg(AT) (i.e. q2 ⇒ t) is p-attacked by the inconsistent potential argument
q1,¬q1 ⇒ t. (Case 3a)

– Alternatively, suppose that prem(Ap) is consistent. Then Ap is an
argument in Arg(AT′) where AT′ = (AS,K ∪ prem(Ap)). Given
that l is stable-blocked in AT, it must be blocked in AT′, so there
must be some argument B in Arg(AT′) that attacks Ap.

* First suppose that B /∈ Arg(AT). Then there is some b ∈
prem(B) such that b ∈ prem(Ap).19 This implies that the
introduction of Ap in AT forces an argument attacking Ap,
which corresponds to Case 5b.

* Alternatively, B ∈ Arg(AT). However, given that l is labelled
L[l].d, there must be some observation-based potential argu-
ment Cp in PQ(AT) that p-attacks B.20 Still, Cp /∈ Arg(AT′′)
for any AT′′ ∈ FQ(AT′) (since l is blocked and not defended
in AT′). Let c = conc(Cp). So for each AT′′ = (AS,K′′) in
FQ(AT′) there is some c′ ∈ c in K. This implies that there is
some c′ ∈ c in K′ = K∪prem(Ap). Given that Cp ∈ PQ(AT),
no c′ ∈ c was in K. So there is some c′ ∈ c in prem(Ap). By
Definition 16, this implies that the introduction of Cp in AT
forces an argument that attacks Ap (Case 5c).

To conclude, each situation in which l is stable in AT but not labelled as such by
L matches one of the five cases.

19See Figure B.25 for an example. Whereas t is stable-blocked in AT, it is labelled L[t].d
because there is a potential argument for t of which the introduction in AT forces an argument
attacking itself.

20See ¬t in Figure 12 for an example.

118

q1⟨1, 0, 0, 0⟩ q2 ⟨1, 1, 0, 0⟩

a⟨0, 1, 0, 1⟩ ¬a
⟨1, 0, 0, 1⟩

t⟨0, 1, 0, 1⟩

⟨0, 1, 0, 0⟩ ⟨1, 1, 0, 0⟩

⟨0, 1, 0, 1⟩ ⟨1, 1, 0, 0⟩

Figure B.21: t is defended in AT. However, t is labelled L[t].b. The reason for this is
that for each argument A for t in Arg(AT) (in this case only [q1 ⇒ a] ⇒ t), there is
some potential argument Bp (in this case q2 ⇒ ¬a) p-attacking A that is not p-attacked
by any observation-based argument. However, the introduction of Bp in AT forces a new
argument (q2 ⇒ t). (Case 3b)

q1⟨0, 1, 0, 0⟩ q2 ⟨0, 1, 0, 0⟩q3⟨1, 1, 0, 0⟩ ¬q3 ⟨1, 1, 0, 0⟩

l1⟨0, 1, 0, 1⟩ ¬l1⟨1, 0, 0, 1⟩ l2 ⟨1, 0, 0, 1⟩ ¬l2 ⟨0, 1, 0, 1⟩

t⟨0, 1, 0, 1⟩

⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩

⟨0, 1, 0, 1⟩ ⟨0, 1, 0, 1⟩

⟨1, 1, 0, 0⟩ ⟨1, 1, 0, 0⟩

Figure B.22: t is stable-defended in AT, but it is labelled L[t].b because each argument
for t in Arg(AT) is p-attacked by a potential argument in PQ(AT) that is not p-attacked
by an observation-based argument in Arg(AT). However, there is no AT′ ∈ FQ(AT) in
which all arguments for t are attacked by an argument in Arg(AT′) that is not attacked by
an observation-based argument. (Case 3c)

119

q1 ⟨0, 1, 0, 0⟩

q2 ⟨0, 0, 1, 0⟩¬q2⟨0, 1, 0, 0⟩ q3⟨1, 1, 0, 0⟩ ¬q3 ⟨1, 1, 0, 0⟩

t⟨0, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩

⟨0, 1, 0, 0⟩

⟨0, 0, 1, 0⟩

Figure B.23: t is stable-out in AT. However, t is labelled L[l].d because each potential
argument for l in PQ(AT) that is not p-attacked by an observation-based argument in
Arg(AT) (in this case only q3,¬q3 ⇒ t) is inconsistent. (Case 4)

q1⟨1, 1, 0, 0⟩ ¬q1 ⟨1, 1, 0, 0⟩

t⟨0, 1, 0, 1⟩

q2⟨0, 1, 0, 0⟩ q3 ⟨0, 1, 0, 0⟩

l1⟨0, 0, 0, 1⟩ ¬l1 ⟨0, 0, 0, 1⟩

⟨1, 1, 0, 0⟩

⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩

⟨0, 0, 0, 1⟩

Figure B.24: Although t is stable-blocked in AT, it is labelled L[t].d because there is an
inconsistent potential argument q1,¬q1 ⇒ t for t in PQ(AT) that is not p-attacked by any
argument in Arg(AT). (Case 5a)

q1⟨0, 1, 0, 0⟩ q2 ⟨0, 1, 0, 0⟩

l1⟨0, 0, 0, 1⟩ ¬l1 ⟨0, 0, 0, 1⟩

t⟨0, 1, 0, 1⟩

q3⟨1, 1, 0, 0⟩

l2⟨1, 1, 0, 1⟩ ¬l2 ⟨1, 1, 0, 1⟩

⟨0, 1, 0, 0⟩ ⟨0, 1, 0, 0⟩

⟨0, 0, 0, 1⟩

⟨1, 1, 0, 0⟩ ⟨1, 1, 0, 0⟩

⟨1, 1, 0, 1⟩

Figure B.25: Although t is stable-blocked in AT, it is labelled L[t].d because there is a
potential argument Ap : [q3 ⇒ l2] ⇒ t for t in PQ(AT) of which the introduction forces
an argument attacking Ap. (Case 5b)

120

Appendix C. Data set generation procedure

Appendix C.1. Random data set
For our experiment on randomly generated data, we implemented an argumen-

tation theory generator that can be parametrised by the language size |L|, rule size
|R|, rule antecedent distribution (i.e. the number of rules that should have a spe-
cific number of antecedents) and queryable size |Q|. The generator can be found
in our GitHub repository at https://github.com/DaphneO/StabilityLabelAlgorit
hm.

First, the language is generated as [l0 . . ln−1] + [¬l0 . . ¬ln−1] where n =
0.5 · |L|. In this experiment, we only consider classical negation as contradiction
function and accordingly add the contradictories (li, {¬li}) and (¬li, {li}) for each
i ∈ [0 . . n− 1]. Next, we sample 0.5 · |Q| literals from the positive literals of the
language and add these literals, as well as their negations, to the set of queryables.
After that, rules are generated one-by-one by randomly selecting a conclusion
literal and a number of antecedent literals (that is dependent on the rule antecedent
distribution) from the language.

In this experiment, we initialised the data set generator with a language size
from [10, 20, 50, 100, 150, 200, 250], a rule set size from [10, 20, 50, 100, 150, 200,
250], a queryable set size of 45% of the language size (rounded to the nearest
integer if necessary) and a rule antecedent distribution such that 40% of the rules
(rounded up) have one antecedent, 40% (rounded up) of the rules have two an-
tecedents and the remaining rules have three antecedents. For each of these 49
configurations, we generated 50 argumentation systems.

Given an argumentation system AS, we did not generate all argumentation
theories in FQ((AS, ∅)), since that would take way too long for data points with
large Q, where |FQ((AS, ∅))| = 30.5|Q|. Instead, we generated 5 argumentation
theories for each of the 0.5 · |Q| possible knowledge base sizes. Note that this
means that some argumentation theories (in particular those with a knowledge
base of 0 items) will occur multiple times, while other argumentation theories
are absent from the data set. For our experiment, this resulted in 5 · 50 · 0.5 · |Q|
argumentation theories. We ran the STABILITY-LABEL algorithm on each of these
argumentation theories and measured the computation time.

Appendix C.2. Layered data set
Our “layered” data set generator can be parametrised by the size of the lan-

guage |L|, rule set size |R|, rule antecedent distribution and literal layer distribu-
tion (i.e. the number of literals such that the potential argument for that literal with

121

https://github.com/DaphneO/StabilityLabelAlgorithm
https://github.com/DaphneO/StabilityLabelAlgorithm

the largest height should be at most a specific number). For example, a data set
generated with the parameters: a language size of 8, rule size of 3, rule antecedent
distribution of [(1, 2), (2, 1)] and literal layer distribution of [(0, 8), (1, 1), (2, 1)]
could contain an argumentation theory with the rules l0 ⇒ l1, l1 ⇒ l2 and
l3, l4 ⇒ l2. In this argumentation theory, the “highest” potential argument for
l2 has a height of 2; the potential argument for l1 has a height of 1; for all other
literals, only observation-based potential arguments (with a height of 0) are pos-
sible.

For this experiment, we initialised the data set generator with a language size
varying from [10, 20, 50, 100, 150, 200, 250]; a rule set size varying from [10, 20,
50, 100, 150, 200, 250]; a rule antecedent distribution such that 40% of the rules
(rounded up) has a single antecedent, 40% (rounded up) of the rules has two an-
tecedents and the remaining rules have three antecedents; a literal layer distribu-
tion such that 40% (rounded up) of the literals have layer 0; 40% of the literals
(rounded up) have layer 1 and the remaining literals have layer have layer 2.

References

Alfano, G., Cohen, A., Gottifredi, S., Greco, S., Parisi, F., Simari, G., 2020. Dy-
namics in abstract argumentation frameworks with recursive attack and support
relations, in: 24th European Conference on Artificial Intelligence, ECAI 2020,
pp. 577–584.

Alfano, G., Greco, S., Parisi, F., 2017. Efficient computation of extensions for dy-
namic abstract argumentation frameworks: an incremental approach, in: Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence,
pp. 49–55.

Alfano, G., Greco, S., Parisi, F., 2019. An efficient algorithm for skeptical pre-
ferred acceptance in dynamic argumentation frameworks, in: Proceedings of
the 28th International Joint Conference on Artificial Intelligence, pp. 18–24.

Alfano, G., Greco, S., Parisi, F., Simari, G.I., Simari, G.R., 2021. Incremen-
tal computation for structured argumentation over dynamic DeLP knowledge
bases. Artificial Intelligence 300, 103553. doi:https://doi.org/10.1016/
j.artint.2021.103553.

Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., Simari,
G., Thimm, M., Villata, S., 2017. Towards artificial argumentation. AI maga-
zine 38, 25–36.

122

http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103553
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103553

Baroni, P., Caminada, M., Giacomin, M., 2011. An introduction to argumentation
semantics. The Knowledge Engineering Review 26, 365–410.

Baumann, R., Brewka, G., 2010. Expanding argumentation frameworks: Enforc-
ing and monotonicity results, in: Computational Models of Argument. Proceed-
ings of COMMA 2010, IOS Press. pp. 75–86.

Baumeister, D., Neugebauer, D., Rothe, J., Schadrack, H., 2018. Verification in
incomplete argumentation frameworks. Artificial Intelligence 264, 1–26.

Besnard, P., Garcia, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.,
2014. Introduction to structured argumentation. Argument & Computation 5,
1–4.

Bex, F., Verheij, B., 2013. Legal stories and the process of proof. Artificial
Intelligence and Law 21, 253–278.

Black, E., Hunter, A., 2009. An inquiry dialogue system. Autonomous Agents
and Multiagent Systems 19, 173–209.

Borg, A., Bex, F., 2021a. A basic framework for explanations in argumentation.
IEEE Intelligent Systems 36, 25–35.

Borg, A., Bex, F., 2021b. Enforcing sets of formulas in structured argumenta-
tion, in: Bienvenu, M., Lakemeyer, G., Erdem, E. (Eds.), Proceedings of the
18th International Conference on Principles of Knowledge Representation and
Reasoning (KR’21), pp. 130–140. doi:10.24963/kr.2021/13.

Borg, A., Bex, F., 2021c. Necessary and sufficient explanations for
argumentation-based conclusions, in: Vejnarová, J., Wilson, N. (Eds.), Pro-
ceedings of the 16th European Conference on Symbolic and Quantitative Ap-
proaches to Reasoning with Uncertainty (ECSQARU’21), Springer. pp. 45–58.
doi:10.1007/978-3-030-86772-0_4.

Caminada, M., Amgoud, L., 2007. On the evaluation of argumentation for-
malisms. Artificial Intelligence 171, 286–310.

Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C., 2010. Change in abstract
argumentation frameworks: Adding an argument. Journal of Artificial Intelli-
gence Research 38, 49–84.

123

http://dx.doi.org/10.24963/kr.2021/13
http://dx.doi.org/10.1007/978-3-030-86772-0_4

Cerutti, F., Thimm, M., Vallati, M., 2020. An experimental analysis on the simi-
larity of argumentation semantics. Argument & Computation 11, 1–36.

Chen, H., Liu, X., Yin, D., Tang, J., 2017. A survey on dialogue systems: Recent
advances and new frontiers. ACM SIGKDD Explorations Newsletter 19, 25–
35.

Craandijk, D., Bex, F., 2020. Deep learning for abstract argumentation semantics,
in: Proceedings of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, pp. 1667–1673. doi:10.24963/ijcai.2020/231.

Cyras, K., Rago, A., Albini, E., Baroni, P., Toni, F., 2021. Argumentative XAI:
A survey. CoRR abs/2105.11266. URL: https://arxiv.org/abs/2105.11266,
arXiv:2105.11266.

Doutre, S., Mailly, J.G., 2018. Constraints and changes: A survey of abstract
argumentation dynamics. Argument & Computation 9, 223–248. doi:10.323
3/AAC-180425.

Dung, P.M., 1995. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence 77, 321–357.

Dvořák, W., Dunne, P.E., 2017. Computational problems in formal argumentation
and their complexity. IfCoLog Journal of Logic and its Applications 4, 2557—
-2622.

European Commission, 2021. Proposal for a regulation of the European Par-
liament and of the council laying down harmonised rules on artificial intelli-
gence (Artificial Intelligence Act) and amending certain union legislative acts.
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206.
[Online; accessed 17 September 2021].

Falappa, M., Kern-Isberner, G., Simari, G., 2009. Belief revision and argumen-
tation theory, in: Simari, G., Rahwan, I. (Eds.), Argumentation in Artificial
Intelligence. Springer, pp. 341–360. doi:10.1007/978-0-387-98197-0_17.

Fan, X., Toni, F., 2012. Agent strategies for ABA-based information-seeking
and inquiry dialogues., in: Proceedings of the 20th European Conference on
Artificial Intelligence, pp. 324–329.

124

http://dx.doi.org/10.24963/ijcai.2020/231
https://arxiv.org/abs/2105.11266
http://arxiv.org/abs/2105.11266
http://dx.doi.org/10.3233/AAC-180425
http://dx.doi.org/10.3233/AAC-180425
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
http://dx.doi.org/10.1007/978-0-387-98197-0_17

Hecham, A., Bisquert, P., Croitoru, M., 2018. On a flexible representation for
defeasible reasoning variants, in: Proceedings of the 17th International Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 1123–1131.

Jurafsky, D., Martin, J.H., 2009. Speech and language processing: an introduction
to natural language processing, computational linguistics, and speech recogni-
tion, 2nd Edition. Pearson.

Mailly, J.G., Rossit, J., 2020. Stability in abstract argumentation, in: NMR 2020
Workshop Notes, pp. 93–99.

Modgil, S., Prakken, H., 2012. Resolutions in structured argumentation, in: Com-
putational Models of Argument. Proceedings of COMMA 2012, pp. 310–321.

Modgil, S., Prakken, H., 2013. A general account of argumentation with prefer-
ences. Artificial Intelligence 195, 361–397.

Modgil, S., Prakken, H., 2018. Abstract rule-based argumentation, in: Baroni,
P., Gabbay, D., Giacomin, M., van der Torre, L. (Eds.), Handbook of Formal
Argumentation. College Publications. volume 1, pp. 286–361.

Nieuwenhuizen, E., 2020. Artificiële intelligentie, is dat wel te vertrouwen? Een
experimentele studie naar het effect van uitleg over beslissingen van het intel-
ligente aangiftesysteem van de politie op het vertrouwen van burgers in deze
beslissingen. (Can we trust Artificial Intelligence? An experimental study into
the effect of explaining decisions of the police’s intelligent intake system on
citizen trust.). Master’s thesis. Utrecht University.

Niskanen, A., Järvisalo, M., 2020. Algorithms for dynamic argumentation frame-
works: An incremental sat-based approach, in: Proceedings of the 24th Euro-
pean Conference on Artificial Intelligence, IOS Press. pp. 849–856.

Odekerken, D., Bex, F., 2020. Towards transparent human-in-the-loop classifi-
cation of fraudulent web shops, in: Villata, S., Harašta, J., Křemen, P. (Eds.),
Proceedings of the 33rd International Conference on Legal Knowledge and In-
formation Systems (JURIX’20), IOS Press. pp. 239–242.

Odekerken, D., Borg, A., Bex, F., 2020. Estimating stability for efficient
argument-based inquiry, in: Prakken, H., Bistarelli, S., Santini, F., Taticchi,
C. (Eds.), Computational Models of Argument. Proceedings of COMMA 2020,
IOS Press. pp. 307–318.

125

Odekerken, D., Borg, A., Bex, F., 2022. Stability and relevance in incomplete
argumentation frameworks (forthcoming), in: Computational Models of Argu-
ment. Proceedings of COMMA 2022.

Paek, T., Pieraccini, R., 2008. Automating spoken dialogue management design
using machine learning: An industry perspective. Speech communication 50,
716–729.

Parsons, S., Wooldridge, M., Amgoud, L., 2002. An analysis of formal inter-
agent dialogues, in: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, ACM. pp. 394–401.

Prakken, H., 2010. An abstract framework for argumentation with structured ar-
guments. Argument & Computation 1, 93–124.

Prakken, H., Vreeswijk, G., 2001. Logics for defeasible argumentation, in: Gab-
bay, D., Guenthner, F. (Eds.), Handbook of Philosophical Logic. Springer. vol-
ume 4, pp. 219–318.

Rudin, C., 2019. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelli-
gence 1, 206–215.

Schraagen, M., Bex, F., 2019. Extraction of semantic relations in noisy user-
generated law enforcement data, in: 13th International Conference on Semantic
Computing, IEEE. pp. 79–86.

Schraagen, M., Bex, F., Odekerken, D., Testerink, B., 2019. Argumentation-
driven information extraction for online crime reports, in: Proceedings of the
International Workshop on Legal Data Analysis and Mining (LeDAM’18)”,
CEUR-WS. pp. 20–25.

Schraagen, M., Brinkhuis, M., Bex, F., 2017. Evaluation of named entity recog-
nition in Dutch online criminal complaints. Computational Linguistics in The
Netherlands Journal 7, 3–16.

Snaith, M., Reed, C., 2016. Argument revision. Journal of Logic and Computation
27, 2089–2134.

Testerink, B., Odekerken, D., Bex, F., 2019a. Ai-assisted message processing
for the netherlands national police, in: Branting, K. (Ed.), Proceedings of the

126

ICAIL 2019 Workshop on AI and the Administrative State (AIAS’19), CEUR-
WS. pp. 10–13.

Testerink, B., Odekerken, D., Bex, F., 2019b. A method for efficient argument-
based inquiry, in: Cuzzocrea, A., Greco, S., Larsen, H.L., Saccà, D., Andreasen,
T., Christiansen, H. (Eds.), Proceedings of the 13th International Conference on
Flexible Query Answering Systems (FQAS’19), Springer. pp. 114–125.

Vassiliades, A., Bassiliades, N., Patkos, T., 2021. Argumentation and explainable
artificial intelligence: A survey. The Knowledge Engineering Review 36, e5.
doi:10.1017/S0269888921000011.

Walton, D., Krabbe, E.C., 1995. Commitment in dialogue: Basic concepts of
interpersonal reasoning. State University of New York Press.

Wu, Y., Caminada, M., 2010. A labelling-based justification status of arguments.
Studies in Logic 3, 12–29.

127

http://dx.doi.org/10.1017/S0269888921000011

	Introduction
	Preliminaries
	ASPIC+
	Argumentation semantics
	Justification status of statements

	Stability
	Defining stability
	A naive algorithm
	The complexity of the stability problem
	Handling complexity with approximation algorithms

	Approximating stability
	Stability approximation algorithm
	Desired stability labelling
	Preprocessing
	Quadruple labelling procedure

	Properties of the proposed algorithm
	Experimental accuracy analysis
	Soundness
	Conditional completeness
	Time complexity
	Computation time

	Case studies at the Netherlands Police
	Case study: fraud intake
	Architecture
	Information extraction
	Argumentation system
	Policy
	Explaining stability
	Discussion

	Case study: international messages
	Case study: web shop classification

	Related work
	Stability and dynamic argumentation
	Inquiry dialogue in computational argumentation and conversational AI

	Conclusion
	Computing the justification status of a literal
	Proofs
	Complexity of the stability problem
	Specification ``in'' and ``out'' the grounded extension
	Justification statuses are exclusive and complementary
	Soundness, completeness and time complexity of Stability-label
	Time complexity of the stability algorithm
	Soundness of the preprocessing algorithm
	Height of arguments
	Soundness proof

	Soundness of the stability algorithm
	Interim labelling
	Soundness proof

	Conditional completeness of the stability labelling algorithm
	Height of potential arguments
	Conditional completeness proof

	Data set generation procedure
	Random data set
	Layered data set

